Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Diferenciraj u odnosu na x
Tick mark Image

Slični problemi iz pretraživanja weba

Dijeliti

\int 4\left(125-150x+60x^{2}-8x^{3}\right)\mathrm{d}x
Upotrijebite binomni teorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} da biste proširili \left(5-2x\right)^{3}.
\int 500-600x+240x^{2}-32x^{3}\mathrm{d}x
Koristite svojstvo distributivnosti da biste pomnožili 4 s 125-150x+60x^{2}-8x^{3}.
\int 500\mathrm{d}x+\int -600x\mathrm{d}x+\int 240x^{2}\mathrm{d}x+\int -32x^{3}\mathrm{d}x
Integrirajte zbroj termina po terminu.
\int 500\mathrm{d}x-600\int x\mathrm{d}x+240\int x^{2}\mathrm{d}x-32\int x^{3}\mathrm{d}x
Izbacite konstantu u svakom od izraza.
500x-600\int x\mathrm{d}x+240\int x^{2}\mathrm{d}x-32\int x^{3}\mathrm{d}x
Pronađite integral 500 pomoću tablice uobičajene integrali pravila \int a\mathrm{d}x=ax.
500x-300x^{2}+240\int x^{2}\mathrm{d}x-32\int x^{3}\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x\mathrm{d}x s \frac{x^{2}}{2}. Pomnožite -600 i \frac{x^{2}}{2}.
500x-300x^{2}+80x^{3}-32\int x^{3}\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{2}\mathrm{d}x s \frac{x^{3}}{3}. Pomnožite 240 i \frac{x^{3}}{3}.
500x-300x^{2}+80x^{3}-8x^{4}
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{3}\mathrm{d}x s \frac{x^{4}}{4}. Pomnožite -32 i \frac{x^{4}}{4}.
500x-300x^{2}+80x^{3}-8x^{4}+С
Ako je F\left(x\right) antiderivat f\left(x\right), skup svih antiderivata f\left(x\right) je dan u F\left(x\right)+C. Stoga dodajte konstantu integracije C\in \mathrm{R} rezultatu.