Izračunaj
\frac{\left(x^{2}-1\right)^{3}}{\left(3x-1\right)\sin(x\log(x+1))}
Diferenciraj u odnosu na x
\frac{\left(-3\ln(e)x^{3}\ln(x+1)\cos(x\log_{10}\left(x+1\right))+\ln(e)x^{2}\ln(x+1)\cos(x\log_{10}\left(x+1\right))-3\ln(e)x^{3}\cos(x\log_{10}\left(x+1\right))+3\ln(e)x\ln(x+1)\cos(x\log_{10}\left(x+1\right))+4\ln(e)x^{2}\cos(x\log_{10}\left(x+1\right))+15\ln(10)x^{2}\sin(x\log_{10}\left(x+1\right))-\ln(e)\ln(x+1)\cos(x\log_{10}\left(x+1\right))-\ln(e)x\cos(x\log_{10}\left(x+1\right))-6\ln(10)x\sin(x\log_{10}\left(x+1\right))+3\ln(10)\sin(x\log_{10}\left(x+1\right))\right)\times \left(\frac{x^{2}-1}{\left(3x-1\right)\sin(x\log_{10}\left(x+1\right))}\right)^{2}}{\ln(10)}
Grafikon
Dijeliti
Kopirano u međuspremnik
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}