Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Proširi
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)^{2}}
Rastavite x^{2}-1 na faktore.
\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-1\right)\left(x+1\right) i \left(x-1\right)^{2} jest \left(x+1\right)\left(x-1\right)^{2}. Pomnožite \frac{x}{\left(x-1\right)\left(x+1\right)} i \frac{x-1}{x-1}. Pomnožite \frac{x+1}{\left(x-1\right)^{2}} i \frac{x+1}{x+1}.
\frac{x\left(x-1\right)+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}}
Budući da \frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}} i \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{x^{2}-x+x^{2}+x+x+1}{\left(x+1\right)\left(x-1\right)^{2}}
Pomnožite izraz x\left(x-1\right)+\left(x+1\right)\left(x+1\right).
\frac{2x^{2}+x+1}{\left(x+1\right)\left(x-1\right)^{2}}
Kombinirajte slične izraze u x^{2}-x+x^{2}+x+x+1.
\frac{2x^{2}+x+1}{x^{3}-x^{2}-x+1}
Proširivanje broja \left(x+1\right)\left(x-1\right)^{2}.
\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)^{2}}
Rastavite x^{2}-1 na faktore.
\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-1\right)\left(x+1\right) i \left(x-1\right)^{2} jest \left(x+1\right)\left(x-1\right)^{2}. Pomnožite \frac{x}{\left(x-1\right)\left(x+1\right)} i \frac{x-1}{x-1}. Pomnožite \frac{x+1}{\left(x-1\right)^{2}} i \frac{x+1}{x+1}.
\frac{x\left(x-1\right)+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}}
Budući da \frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}} i \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{x^{2}-x+x^{2}+x+x+1}{\left(x+1\right)\left(x-1\right)^{2}}
Pomnožite izraz x\left(x-1\right)+\left(x+1\right)\left(x+1\right).
\frac{2x^{2}+x+1}{\left(x+1\right)\left(x-1\right)^{2}}
Kombinirajte slične izraze u x^{2}-x+x^{2}+x+x+1.
\frac{2x^{2}+x+1}{x^{3}-x^{2}-x+1}
Proširivanje broja \left(x+1\right)\left(x-1\right)^{2}.