Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Proširi
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

\frac{x^{2}+x}{\left(x-7\right)\left(x+7\right)}+\frac{x^{2}-1}{\left(x+7\right)\left(x+10\right)}
Rastavite x^{2}-49 na faktore. Rastavite x^{2}+17x+70 na faktore.
\frac{\left(x^{2}+x\right)\left(x+10\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}+\frac{\left(x^{2}-1\right)\left(x-7\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-7\right)\left(x+7\right) i \left(x+7\right)\left(x+10\right) jest \left(x-7\right)\left(x+7\right)\left(x+10\right). Pomnožite \frac{x^{2}+x}{\left(x-7\right)\left(x+7\right)} i \frac{x+10}{x+10}. Pomnožite \frac{x^{2}-1}{\left(x+7\right)\left(x+10\right)} i \frac{x-7}{x-7}.
\frac{\left(x^{2}+x\right)\left(x+10\right)+\left(x^{2}-1\right)\left(x-7\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}
Budući da \frac{\left(x^{2}+x\right)\left(x+10\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)} i \frac{\left(x^{2}-1\right)\left(x-7\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{x^{3}+10x^{2}+x^{2}+10x+x^{3}-7x^{2}-x+7}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}
Pomnožite izraz \left(x^{2}+x\right)\left(x+10\right)+\left(x^{2}-1\right)\left(x-7\right).
\frac{2x^{3}+4x^{2}+9x+7}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}
Kombinirajte slične izraze u x^{3}+10x^{2}+x^{2}+10x+x^{3}-7x^{2}-x+7.
\frac{2x^{3}+4x^{2}+9x+7}{x^{3}+10x^{2}-49x-490}
Proširivanje broja \left(x-7\right)\left(x+7\right)\left(x+10\right).
\frac{x^{2}+x}{\left(x-7\right)\left(x+7\right)}+\frac{x^{2}-1}{\left(x+7\right)\left(x+10\right)}
Rastavite x^{2}-49 na faktore. Rastavite x^{2}+17x+70 na faktore.
\frac{\left(x^{2}+x\right)\left(x+10\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}+\frac{\left(x^{2}-1\right)\left(x-7\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-7\right)\left(x+7\right) i \left(x+7\right)\left(x+10\right) jest \left(x-7\right)\left(x+7\right)\left(x+10\right). Pomnožite \frac{x^{2}+x}{\left(x-7\right)\left(x+7\right)} i \frac{x+10}{x+10}. Pomnožite \frac{x^{2}-1}{\left(x+7\right)\left(x+10\right)} i \frac{x-7}{x-7}.
\frac{\left(x^{2}+x\right)\left(x+10\right)+\left(x^{2}-1\right)\left(x-7\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}
Budući da \frac{\left(x^{2}+x\right)\left(x+10\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)} i \frac{\left(x^{2}-1\right)\left(x-7\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{x^{3}+10x^{2}+x^{2}+10x+x^{3}-7x^{2}-x+7}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}
Pomnožite izraz \left(x^{2}+x\right)\left(x+10\right)+\left(x^{2}-1\right)\left(x-7\right).
\frac{2x^{3}+4x^{2}+9x+7}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}
Kombinirajte slične izraze u x^{3}+10x^{2}+x^{2}+10x+x^{3}-7x^{2}-x+7.
\frac{2x^{3}+4x^{2}+9x+7}{x^{3}+10x^{2}-49x-490}
Proširivanje broja \left(x-7\right)\left(x+7\right)\left(x+10\right).