Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Proširi
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

\frac{\frac{3-x}{2x-4}}{\frac{\left(x+2\right)\left(x-2\right)}{x-2}-\frac{5}{x-2}}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite x+2 i \frac{x-2}{x-2}.
\frac{\frac{3-x}{2x-4}}{\frac{\left(x+2\right)\left(x-2\right)-5}{x-2}}
Budući da \frac{\left(x+2\right)\left(x-2\right)}{x-2} i \frac{5}{x-2} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{\frac{3-x}{2x-4}}{\frac{x^{2}-2x+2x-4-5}{x-2}}
Pomnožite izraz \left(x+2\right)\left(x-2\right)-5.
\frac{\frac{3-x}{2x-4}}{\frac{x^{2}-9}{x-2}}
Kombinirajte slične izraze u x^{2}-2x+2x-4-5.
\frac{\left(3-x\right)\left(x-2\right)}{\left(2x-4\right)\left(x^{2}-9\right)}
Podijelite \frac{3-x}{2x-4} s \frac{x^{2}-9}{x-2} tako da pomnožite \frac{3-x}{2x-4} s brojem recipročnim broju \frac{x^{2}-9}{x-2}.
\frac{\left(x-2\right)\left(-x+3\right)}{2\left(x-3\right)\left(x-2\right)\left(x+3\right)}
Rastavite na faktore izraze koji još nisu rastavljeni na faktore.
\frac{-\left(x-3\right)\left(x-2\right)}{2\left(x-3\right)\left(x-2\right)\left(x+3\right)}
Izdvojite negativni predznak u izrazu 3-x.
\frac{-1}{2\left(x+3\right)}
Skratite \left(x-3\right)\left(x-2\right) u brojniku i nazivniku.
\frac{-1}{2x+6}
Proširite izraz.
\frac{\frac{3-x}{2x-4}}{\frac{\left(x+2\right)\left(x-2\right)}{x-2}-\frac{5}{x-2}}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite x+2 i \frac{x-2}{x-2}.
\frac{\frac{3-x}{2x-4}}{\frac{\left(x+2\right)\left(x-2\right)-5}{x-2}}
Budući da \frac{\left(x+2\right)\left(x-2\right)}{x-2} i \frac{5}{x-2} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{\frac{3-x}{2x-4}}{\frac{x^{2}-2x+2x-4-5}{x-2}}
Pomnožite izraz \left(x+2\right)\left(x-2\right)-5.
\frac{\frac{3-x}{2x-4}}{\frac{x^{2}-9}{x-2}}
Kombinirajte slične izraze u x^{2}-2x+2x-4-5.
\frac{\left(3-x\right)\left(x-2\right)}{\left(2x-4\right)\left(x^{2}-9\right)}
Podijelite \frac{3-x}{2x-4} s \frac{x^{2}-9}{x-2} tako da pomnožite \frac{3-x}{2x-4} s brojem recipročnim broju \frac{x^{2}-9}{x-2}.
\frac{\left(x-2\right)\left(-x+3\right)}{2\left(x-3\right)\left(x-2\right)\left(x+3\right)}
Rastavite na faktore izraze koji još nisu rastavljeni na faktore.
\frac{-\left(x-3\right)\left(x-2\right)}{2\left(x-3\right)\left(x-2\right)\left(x+3\right)}
Izdvojite negativni predznak u izrazu 3-x.
\frac{-1}{2\left(x+3\right)}
Skratite \left(x-3\right)\left(x-2\right) u brojniku i nazivniku.
\frac{-1}{2x+6}
Proširite izraz.