Izračunaj
\frac{\left(a-2\right)\left(3a+7\right)}{\left(a-5\right)\left(a+1\right)^{2}}
Proširi
\frac{3a^{2}+a-14}{\left(a-5\right)\left(a+1\right)^{2}}
Dijeliti
Kopirano u međuspremnik
\frac{1}{a-5}+\frac{a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Rastavite a^{2}-4a-5 na faktore.
\frac{a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva a-5 i \left(a-5\right)\left(a+1\right) jest \left(a-5\right)\left(a+1\right). Pomnožite \frac{1}{a-5} i \frac{a+1}{a+1}.
\frac{a+1+a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Budući da \frac{a+1}{\left(a-5\right)\left(a+1\right)} i \frac{a}{\left(a-5\right)\left(a+1\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{2a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Kombinirajte slične izraze u a+1+a.
\frac{2a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{\left(a+1\right)^{2}}
Rastavite a^{2}+2a+1 na faktore.
\frac{\left(2a+1\right)\left(a+1\right)}{\left(a-5\right)\left(a+1\right)^{2}}+\frac{\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(a-5\right)\left(a+1\right) i \left(a+1\right)^{2} jest \left(a-5\right)\left(a+1\right)^{2}. Pomnožite \frac{2a+1}{\left(a-5\right)\left(a+1\right)} i \frac{a+1}{a+1}. Pomnožite \frac{a+3}{\left(a+1\right)^{2}} i \frac{a-5}{a-5}.
\frac{\left(2a+1\right)\left(a+1\right)+\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}}
Budući da \frac{\left(2a+1\right)\left(a+1\right)}{\left(a-5\right)\left(a+1\right)^{2}} i \frac{\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{2a^{2}+2a+a+1+a^{2}-5a+3a-15}{\left(a-5\right)\left(a+1\right)^{2}}
Pomnožite izraz \left(2a+1\right)\left(a+1\right)+\left(a+3\right)\left(a-5\right).
\frac{3a^{2}+a-14}{\left(a-5\right)\left(a+1\right)^{2}}
Kombinirajte slične izraze u 2a^{2}+2a+a+1+a^{2}-5a+3a-15.
\frac{3a^{2}+a-14}{a^{3}-3a^{2}-9a-5}
Proširivanje broja \left(a-5\right)\left(a+1\right)^{2}.
\frac{1}{a-5}+\frac{a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Rastavite a^{2}-4a-5 na faktore.
\frac{a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva a-5 i \left(a-5\right)\left(a+1\right) jest \left(a-5\right)\left(a+1\right). Pomnožite \frac{1}{a-5} i \frac{a+1}{a+1}.
\frac{a+1+a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Budući da \frac{a+1}{\left(a-5\right)\left(a+1\right)} i \frac{a}{\left(a-5\right)\left(a+1\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{2a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Kombinirajte slične izraze u a+1+a.
\frac{2a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{\left(a+1\right)^{2}}
Rastavite a^{2}+2a+1 na faktore.
\frac{\left(2a+1\right)\left(a+1\right)}{\left(a-5\right)\left(a+1\right)^{2}}+\frac{\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(a-5\right)\left(a+1\right) i \left(a+1\right)^{2} jest \left(a-5\right)\left(a+1\right)^{2}. Pomnožite \frac{2a+1}{\left(a-5\right)\left(a+1\right)} i \frac{a+1}{a+1}. Pomnožite \frac{a+3}{\left(a+1\right)^{2}} i \frac{a-5}{a-5}.
\frac{\left(2a+1\right)\left(a+1\right)+\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}}
Budući da \frac{\left(2a+1\right)\left(a+1\right)}{\left(a-5\right)\left(a+1\right)^{2}} i \frac{\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{2a^{2}+2a+a+1+a^{2}-5a+3a-15}{\left(a-5\right)\left(a+1\right)^{2}}
Pomnožite izraz \left(2a+1\right)\left(a+1\right)+\left(a+3\right)\left(a-5\right).
\frac{3a^{2}+a-14}{\left(a-5\right)\left(a+1\right)^{2}}
Kombinirajte slične izraze u 2a^{2}+2a+a+1+a^{2}-5a+3a-15.
\frac{3a^{2}+a-14}{a^{3}-3a^{2}-9a-5}
Proširivanje broja \left(a-5\right)\left(a+1\right)^{2}.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}