Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Proširi
Tick mark Image

Slični problemi iz pretraživanja weba

Dijeliti

\frac{1}{a-5}+\frac{a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Rastavite a^{2}-4a-5 na faktore.
\frac{a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva a-5 i \left(a-5\right)\left(a+1\right) jest \left(a-5\right)\left(a+1\right). Pomnožite \frac{1}{a-5} i \frac{a+1}{a+1}.
\frac{a+1+a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Budući da \frac{a+1}{\left(a-5\right)\left(a+1\right)} i \frac{a}{\left(a-5\right)\left(a+1\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{2a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Kombinirajte slične izraze u a+1+a.
\frac{2a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{\left(a+1\right)^{2}}
Rastavite a^{2}+2a+1 na faktore.
\frac{\left(2a+1\right)\left(a+1\right)}{\left(a-5\right)\left(a+1\right)^{2}}+\frac{\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(a-5\right)\left(a+1\right) i \left(a+1\right)^{2} jest \left(a-5\right)\left(a+1\right)^{2}. Pomnožite \frac{2a+1}{\left(a-5\right)\left(a+1\right)} i \frac{a+1}{a+1}. Pomnožite \frac{a+3}{\left(a+1\right)^{2}} i \frac{a-5}{a-5}.
\frac{\left(2a+1\right)\left(a+1\right)+\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}}
Budući da \frac{\left(2a+1\right)\left(a+1\right)}{\left(a-5\right)\left(a+1\right)^{2}} i \frac{\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{2a^{2}+2a+a+1+a^{2}-5a+3a-15}{\left(a-5\right)\left(a+1\right)^{2}}
Pomnožite izraz \left(2a+1\right)\left(a+1\right)+\left(a+3\right)\left(a-5\right).
\frac{3a^{2}+a-14}{\left(a-5\right)\left(a+1\right)^{2}}
Kombinirajte slične izraze u 2a^{2}+2a+a+1+a^{2}-5a+3a-15.
\frac{3a^{2}+a-14}{a^{3}-3a^{2}-9a-5}
Proširivanje broja \left(a-5\right)\left(a+1\right)^{2}.
\frac{1}{a-5}+\frac{a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Rastavite a^{2}-4a-5 na faktore.
\frac{a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva a-5 i \left(a-5\right)\left(a+1\right) jest \left(a-5\right)\left(a+1\right). Pomnožite \frac{1}{a-5} i \frac{a+1}{a+1}.
\frac{a+1+a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Budući da \frac{a+1}{\left(a-5\right)\left(a+1\right)} i \frac{a}{\left(a-5\right)\left(a+1\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{2a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Kombinirajte slične izraze u a+1+a.
\frac{2a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{\left(a+1\right)^{2}}
Rastavite a^{2}+2a+1 na faktore.
\frac{\left(2a+1\right)\left(a+1\right)}{\left(a-5\right)\left(a+1\right)^{2}}+\frac{\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(a-5\right)\left(a+1\right) i \left(a+1\right)^{2} jest \left(a-5\right)\left(a+1\right)^{2}. Pomnožite \frac{2a+1}{\left(a-5\right)\left(a+1\right)} i \frac{a+1}{a+1}. Pomnožite \frac{a+3}{\left(a+1\right)^{2}} i \frac{a-5}{a-5}.
\frac{\left(2a+1\right)\left(a+1\right)+\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}}
Budući da \frac{\left(2a+1\right)\left(a+1\right)}{\left(a-5\right)\left(a+1\right)^{2}} i \frac{\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{2a^{2}+2a+a+1+a^{2}-5a+3a-15}{\left(a-5\right)\left(a+1\right)^{2}}
Pomnožite izraz \left(2a+1\right)\left(a+1\right)+\left(a+3\right)\left(a-5\right).
\frac{3a^{2}+a-14}{\left(a-5\right)\left(a+1\right)^{2}}
Kombinirajte slične izraze u 2a^{2}+2a+a+1+a^{2}-5a+3a-15.
\frac{3a^{2}+a-14}{a^{3}-3a^{2}-9a-5}
Proširivanje broja \left(a-5\right)\left(a+1\right)^{2}.