मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

a+b=5 ab=1\times 6=6
समूहीकरण द्वारा व्यंजक को फ़ैक्टर करें. सबसे पहले, व्यंजक को y^{2}+ay+by+6 के रूप में फिर से लिखा जाना आवश्यक है. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,6 2,3
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूंकि a+b सकारात्मक है, a और b दोनों सकारात्मक हैं. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद 6 देते हैं.
1+6=7 2+3=5
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=2 b=3
हल वह जोड़ी है जो 5 योग देती है.
\left(y^{2}+2y\right)+\left(3y+6\right)
y^{2}+5y+6 को \left(y^{2}+2y\right)+\left(3y+6\right) के रूप में फिर से लिखें.
y\left(y+2\right)+3\left(y+2\right)
पहले समूह में y के और दूसरे समूह में 3 को गुणनखंड बनाएँ.
\left(y+2\right)\left(y+3\right)
विभाजन के गुण का उपयोग करके सामान्य पद y+2 के गुणनखंड बनाएँ.
y^{2}+5y+6=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
y=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
y=\frac{-5±\sqrt{25-4\times 6}}{2}
वर्गमूल 5.
y=\frac{-5±\sqrt{25-24}}{2}
-4 को 6 बार गुणा करें.
y=\frac{-5±\sqrt{1}}{2}
25 में -24 को जोड़ें.
y=\frac{-5±1}{2}
1 का वर्गमूल लें.
y=-\frac{4}{2}
± के धन में होने पर अब समीकरण y=\frac{-5±1}{2} को हल करें. -5 में 1 को जोड़ें.
y=-2
2 को -4 से विभाजित करें.
y=-\frac{6}{2}
± के ऋण में होने पर अब समीकरण y=\frac{-5±1}{2} को हल करें. -5 में से 1 को घटाएं.
y=-3
2 को -6 से विभाजित करें.
y^{2}+5y+6=\left(y-\left(-2\right)\right)\left(y-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए -2 और x_{2} के लिए -3 स्थानापन्न है.
y^{2}+5y+6=\left(y+2\right)\left(y+3\right)
प्रपत्र के सभी व्यंजकों को p-\left(-q\right) से p+q तक सरलीकृत करें.