मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

y\left(y+3\right)
y के गुणनखंड बनाएँ.
y^{2}+3y=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
y=\frac{-3±\sqrt{3^{2}}}{2}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
y=\frac{-3±3}{2}
3^{2} का वर्गमूल लें.
y=\frac{0}{2}
± के धन में होने पर अब समीकरण y=\frac{-3±3}{2} को हल करें. -3 में 3 को जोड़ें.
y=0
2 को 0 से विभाजित करें.
y=-\frac{6}{2}
± के ऋण में होने पर अब समीकरण y=\frac{-3±3}{2} को हल करें. -3 में से 3 को घटाएं.
y=-3
2 को -6 से विभाजित करें.
y^{2}+3y=y\left(y-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए 0 और x_{2} के लिए -3 स्थानापन्न है.
y^{2}+3y=y\left(y+3\right)
प्रपत्र के सभी व्यंजकों को p-\left(-q\right) से p+q तक सरलीकृत करें.