x के लिए हल करें
x=\frac{1}{2}=0.5
x=-\frac{1}{2}=-0.5
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
x-\frac{1}{4x}=0
दोनों ओर से \frac{1}{4x} घटाएँ.
\frac{x\times 4x}{4x}-\frac{1}{4x}=0
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. x को \frac{4x}{4x} बार गुणा करें.
\frac{x\times 4x-1}{4x}=0
चूँकि \frac{x\times 4x}{4x} और \frac{1}{4x} का एक ही भाजक है, इसलिए उनके भाजकों को घटाकर उन्हें घटाएँ.
\frac{4x^{2}-1}{4x}=0
x\times 4x-1 का गुणन करें.
4x^{2}-1=0
चर x, 0 के बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों को 4x से गुणा करें.
\left(2x-1\right)\left(2x+1\right)=0
4x^{2}-1 पर विचार करें. 4x^{2}-1 को \left(2x\right)^{2}-1^{2} के रूप में फिर से लिखें. वर्गों का अंतर को इस नियम को उपयोग करके भाज्य किया जा सकता है: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{2} x=-\frac{1}{2}
समीकरण समाधानों को ढूँढने के लिए, 2x-1=0 और 2x+1=0 को हल करें.
x-\frac{1}{4x}=0
दोनों ओर से \frac{1}{4x} घटाएँ.
\frac{x\times 4x}{4x}-\frac{1}{4x}=0
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. x को \frac{4x}{4x} बार गुणा करें.
\frac{x\times 4x-1}{4x}=0
चूँकि \frac{x\times 4x}{4x} और \frac{1}{4x} का एक ही भाजक है, इसलिए उनके भाजकों को घटाकर उन्हें घटाएँ.
\frac{4x^{2}-1}{4x}=0
x\times 4x-1 का गुणन करें.
4x^{2}-1=0
चर x, 0 के बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों को 4x से गुणा करें.
4x^{2}=1
दोनों ओर 1 जोड़ें. किसी भी संख्या में शून्य जोड़ने पर परिणाम वही आता है.
x^{2}=\frac{1}{4}
दोनों ओर 4 से विभाजन करें.
x=\frac{1}{2} x=-\frac{1}{2}
समीकरण के दोनों ओर का वर्गमूल लें.
x-\frac{1}{4x}=0
दोनों ओर से \frac{1}{4x} घटाएँ.
\frac{x\times 4x}{4x}-\frac{1}{4x}=0
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. x को \frac{4x}{4x} बार गुणा करें.
\frac{x\times 4x-1}{4x}=0
चूँकि \frac{x\times 4x}{4x} और \frac{1}{4x} का एक ही भाजक है, इसलिए उनके भाजकों को घटाकर उन्हें घटाएँ.
\frac{4x^{2}-1}{4x}=0
x\times 4x-1 का गुणन करें.
4x^{2}-1=0
चर x, 0 के बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों को 4x से गुणा करें.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-1\right)}}{2\times 4}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 4, b के लिए 0 और द्विघात सूत्र में c के लिए -1, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-1\right)}}{2\times 4}
वर्गमूल 0.
x=\frac{0±\sqrt{-16\left(-1\right)}}{2\times 4}
-4 को 4 बार गुणा करें.
x=\frac{0±\sqrt{16}}{2\times 4}
-16 को -1 बार गुणा करें.
x=\frac{0±4}{2\times 4}
16 का वर्गमूल लें.
x=\frac{0±4}{8}
2 को 4 बार गुणा करें.
x=\frac{1}{2}
± के धन में होने पर अब समीकरण x=\frac{0±4}{8} को हल करें. 4 को निकालकर और रद्द करके भिन्न \frac{4}{8} को न्यूनतम पदों तक कम करें.
x=-\frac{1}{2}
± के ऋण में होने पर अब समीकरण x=\frac{0±4}{8} को हल करें. 4 को निकालकर और रद्द करके भिन्न \frac{-4}{8} को न्यूनतम पदों तक कम करें.
x=\frac{1}{2} x=-\frac{1}{2}
अब समीकरण का समाधान हो गया है.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}