मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

x^{3}\left(x^{2}-1\right)+27\left(x^{2}-1\right)
x^{5}-x^{3}+27x^{2}-27=\left(x^{5}-x^{3}\right)+\left(27x^{2}-27\right) समूहीकरण करें और पहले में x^{3} और दूसरे समूह में 27 को गुणनखंड बनाएँ.
\left(x^{2}-1\right)\left(x^{3}+27\right)
विभाजन के गुण का उपयोग करके सामान्य पद x^{2}-1 के गुणनखंड बनाएँ.
\left(x-1\right)\left(x+1\right)
x^{2}-1 पर विचार करें. x^{2}-1 को x^{2}-1^{2} के रूप में फिर से लिखें. वर्गों का अंतर को इस नियम को उपयोग करके भाज्य किया जा सकता है: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x+3\right)\left(x^{2}-3x+9\right)
x^{3}+27 पर विचार करें. x^{3}+27 को x^{3}+3^{3} के रूप में फिर से लिखें. क्यूब के योग को इस नियम का उपयोग करके भाज्य नहीं किया जा सकता: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x^{2}-3x+9\right)
पूर्ण फ़ैक्टर व्यंजक को फिर से लिखें. बहुपद x^{2}-3x+9 फ़ैक्टर नहीं किया गया क्योंकि इसमें कोई तर्कसंगत रूट नहीं हैं.