मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

\left(x-3\right)\left(x^{2}-x-2\right)
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द 6 को विभाजित करती है और q अग्रणी गुणांक 1 को विभाजित करती है. ऐसा ही एक रूट 3 है. बहुपद को x-3 द्वारा विभाजित करके फ़ैक्टर करें.
a+b=-1 ab=1\left(-2\right)=-2
x^{2}-x-2 पर विचार करें. समूहीकरण द्वारा व्यंजक को फ़ैक्टर करें. सबसे पहले, व्यंजक को x^{2}+ax+bx-2 के रूप में फिर से लिखा जाना आवश्यक है. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
a=-2 b=1
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b ऋणात्मक है, इसलिए ऋणात्मक संख्या में धनात्मक से अधिक निरपेक्ष मान है. केवल ऐसी जोड़ी सिस्टम समाधान है.
\left(x^{2}-2x\right)+\left(x-2\right)
x^{2}-x-2 को \left(x^{2}-2x\right)+\left(x-2\right) के रूप में फिर से लिखें.
x\left(x-2\right)+x-2
x^{2}-2x में x को गुणनखंड बनाएँ.
\left(x-2\right)\left(x+1\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-2 के गुणनखंड बनाएँ.
\left(x-3\right)\left(x-2\right)\left(x+1\right)
पूर्ण फ़ैक्टर व्यंजक को फिर से लिखें.