मुख्य सामग्री पर जाएं
x के लिए हल करें (जटिल समाधान)
Tick mark Image
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

±6,±3,±2,±1
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द -6 को विभाजित करती है और q अग्रणी गुणांक 1 को विभाजित करती है. \frac{p}{q} सभी उंमीदवारों की सूची.
x=2
निरपेक्ष मान के द्वारा छोटे से प्रारंभ करके, सभी पूर्णांक मानों को आज़माकर एक जैसे रूट ढूँढें. यदि कोई पूर्णांक जड़ें नहीं मिलती हैं, तो भिन्नों को आज़माएँ.
x^{2}-x+3=0
फ़ैक्टर प्रमेय के द्वारा, x-k प्रत्येक रूट k के लिए बहुपद का एक फ़ैक्टर है. x^{2}-x+3 प्राप्त करने के लिए x^{3}-3x^{2}+5x-6 को x-2 से विभाजित करें. समीकरण को हल करें जहाँ परिणाम 0 के बराबर हो.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 3}}{2}
प्रपत्र ax^{2}+bx+c=0 के सभी समीकरणों को \frac{-b±\sqrt{b^{2}-4ac}}{2a} द्विघात सूत्र का उपयोग करके हल किया जा सकता है. द्विघात सूत्र में a के लिए 1, b के लिए -1, और c के लिए 3 प्रतिस्थापित करें.
x=\frac{1±\sqrt{-11}}{2}
परिकलन करें.
x=\frac{-\sqrt{11}i+1}{2} x=\frac{1+\sqrt{11}i}{2}
समीकरण x^{2}-x+3=0 को हल करें जब ± धन है और जब ± ऋण है.
x=2 x=\frac{-\sqrt{11}i+1}{2} x=\frac{1+\sqrt{11}i}{2}
सभी मिले हुए समाधानों की सूची.
±6,±3,±2,±1
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द -6 को विभाजित करती है और q अग्रणी गुणांक 1 को विभाजित करती है. \frac{p}{q} सभी उंमीदवारों की सूची.
x=2
निरपेक्ष मान के द्वारा छोटे से प्रारंभ करके, सभी पूर्णांक मानों को आज़माकर एक जैसे रूट ढूँढें. यदि कोई पूर्णांक जड़ें नहीं मिलती हैं, तो भिन्नों को आज़माएँ.
x^{2}-x+3=0
फ़ैक्टर प्रमेय के द्वारा, x-k प्रत्येक रूट k के लिए बहुपद का एक फ़ैक्टर है. x^{2}-x+3 प्राप्त करने के लिए x^{3}-3x^{2}+5x-6 को x-2 से विभाजित करें. समीकरण को हल करें जहाँ परिणाम 0 के बराबर हो.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 3}}{2}
प्रपत्र ax^{2}+bx+c=0 के सभी समीकरणों को \frac{-b±\sqrt{b^{2}-4ac}}{2a} द्विघात सूत्र का उपयोग करके हल किया जा सकता है. द्विघात सूत्र में a के लिए 1, b के लिए -1, और c के लिए 3 प्रतिस्थापित करें.
x=\frac{1±\sqrt{-11}}{2}
परिकलन करें.
x\in \emptyset
चूँकि वास्तविक फ़ील्ड में ऋणात्मक संख्या का वर्गमूल निर्धारित नहीं है, इसलिए कोई हल नहीं है.
x=2
सभी मिले हुए समाधानों की सूची.