x के लिए हल करें
x=-8
x=9
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
a+b=-1 ab=-72
समीकरण को हल करने के लिए, सूत्र x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) का उपयोग करके x^{2}-x-72 फ़ैक्टर. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,-72 2,-36 3,-24 4,-18 6,-12 8,-9
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b ऋणात्मक है, इसलिए ऋणात्मक संख्या में धनात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -72 देते हैं.
1-72=-71 2-36=-34 3-24=-21 4-18=-14 6-12=-6 8-9=-1
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-9 b=8
हल वह जोड़ी है जो -1 योग देती है.
\left(x-9\right)\left(x+8\right)
प्राप्त किए गए मानों का उपयोग कर \left(x+a\right)\left(x+b\right) फ़ैक्टरी व्यंजक को फिर से लिखें.
x=9 x=-8
समीकरण समाधानों को ढूँढने के लिए, x-9=0 और x+8=0 को हल करें.
a+b=-1 ab=1\left(-72\right)=-72
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर x^{2}+ax+bx-72 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,-72 2,-36 3,-24 4,-18 6,-12 8,-9
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b ऋणात्मक है, इसलिए ऋणात्मक संख्या में धनात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -72 देते हैं.
1-72=-71 2-36=-34 3-24=-21 4-18=-14 6-12=-6 8-9=-1
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-9 b=8
हल वह जोड़ी है जो -1 योग देती है.
\left(x^{2}-9x\right)+\left(8x-72\right)
x^{2}-x-72 को \left(x^{2}-9x\right)+\left(8x-72\right) के रूप में फिर से लिखें.
x\left(x-9\right)+8\left(x-9\right)
पहले समूह में x के और दूसरे समूह में 8 को गुणनखंड बनाएँ.
\left(x-9\right)\left(x+8\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-9 के गुणनखंड बनाएँ.
x=9 x=-8
समीकरण समाधानों को ढूँढने के लिए, x-9=0 और x+8=0 को हल करें.
x^{2}-x-72=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-72\right)}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए -1 और द्विघात सूत्र में c के लिए -72, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+288}}{2}
-4 को -72 बार गुणा करें.
x=\frac{-\left(-1\right)±\sqrt{289}}{2}
1 में 288 को जोड़ें.
x=\frac{-\left(-1\right)±17}{2}
289 का वर्गमूल लें.
x=\frac{1±17}{2}
-1 का विपरीत 1 है.
x=\frac{18}{2}
± के धन में होने पर अब समीकरण x=\frac{1±17}{2} को हल करें. 1 में 17 को जोड़ें.
x=9
2 को 18 से विभाजित करें.
x=-\frac{16}{2}
± के ऋण में होने पर अब समीकरण x=\frac{1±17}{2} को हल करें. 1 में से 17 को घटाएं.
x=-8
2 को -16 से विभाजित करें.
x=9 x=-8
अब समीकरण का समाधान हो गया है.
x^{2}-x-72=0
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
x^{2}-x-72-\left(-72\right)=-\left(-72\right)
समीकरण के दोनों ओर 72 जोड़ें.
x^{2}-x=-\left(-72\right)
-72 को इसी से घटाने से 0 मिलता है.
x^{2}-x=72
0 में से -72 को घटाएं.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=72+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} प्राप्त करने के लिए x पद के गुणांक -1 को 2 से भाग दें. फिर समीकरण के दोनों ओर -\frac{1}{2} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}-x+\frac{1}{4}=72+\frac{1}{4}
भिन्न के अंश और हर दोनों का वर्गमूल करके -\frac{1}{2} का वर्ग करें.
x^{2}-x+\frac{1}{4}=\frac{289}{4}
72 में \frac{1}{4} को जोड़ें.
\left(x-\frac{1}{2}\right)^{2}=\frac{289}{4}
गुणक x^{2}-x+\frac{1}{4}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{289}{4}}
समीकरण के दोनों ओर का वर्गमूल लें.
x-\frac{1}{2}=\frac{17}{2} x-\frac{1}{2}=-\frac{17}{2}
सरल बनाएं.
x=9 x=-8
समीकरण के दोनों ओर \frac{1}{2} जोड़ें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}