मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

a+b=-1 ab=1\left(-2\right)=-2
समूहीकरण द्वारा व्यंजक को फ़ैक्टर करें. सबसे पहले, व्यंजक को x^{2}+ax+bx-2 के रूप में फिर से लिखा जाना आवश्यक है. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
a=-2 b=1
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b ऋणात्मक है, इसलिए ऋणात्मक संख्या में धनात्मक से अधिक निरपेक्ष मान है. केवल ऐसी जोड़ी सिस्टम समाधान है.
\left(x^{2}-2x\right)+\left(x-2\right)
x^{2}-x-2 को \left(x^{2}-2x\right)+\left(x-2\right) के रूप में फिर से लिखें.
x\left(x-2\right)+x-2
x^{2}-2x में x को गुणनखंड बनाएँ.
\left(x-2\right)\left(x+1\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-2 के गुणनखंड बनाएँ.
x^{2}-x-2=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)}}{2}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2}
-4 को -2 बार गुणा करें.
x=\frac{-\left(-1\right)±\sqrt{9}}{2}
1 में 8 को जोड़ें.
x=\frac{-\left(-1\right)±3}{2}
9 का वर्गमूल लें.
x=\frac{1±3}{2}
-1 का विपरीत 1 है.
x=\frac{4}{2}
± के धन में होने पर अब समीकरण x=\frac{1±3}{2} को हल करें. 1 में 3 को जोड़ें.
x=2
2 को 4 से विभाजित करें.
x=-\frac{2}{2}
± के ऋण में होने पर अब समीकरण x=\frac{1±3}{2} को हल करें. 1 में से 3 को घटाएं.
x=-1
2 को -2 से विभाजित करें.
x^{2}-x-2=\left(x-2\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए 2 और x_{2} के लिए -1 स्थानापन्न है.
x^{2}-x-2=\left(x-2\right)\left(x+1\right)
प्रपत्र के सभी व्यंजकों को p-\left(-q\right) से p+q तक सरलीकृत करें.