मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

a+b=-11 ab=1\times 10=10
समूहीकरण द्वारा व्यंजक को फ़ैक्टर करें. सबसे पहले, व्यंजक को x^{2}+ax+bx+10 के रूप में फिर से लिखा जाना आवश्यक है. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,-10 -2,-5
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूँकि a+b नकारात्मक है, a और b दोनों नकारात्मक हैं. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद 10 देते हैं.
-1-10=-11 -2-5=-7
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-10 b=-1
हल वह जोड़ी है जो -11 योग देती है.
\left(x^{2}-10x\right)+\left(-x+10\right)
x^{2}-11x+10 को \left(x^{2}-10x\right)+\left(-x+10\right) के रूप में फिर से लिखें.
x\left(x-10\right)-\left(x-10\right)
पहले समूह में x के और दूसरे समूह में -1 को गुणनखंड बनाएँ.
\left(x-10\right)\left(x-1\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-10 के गुणनखंड बनाएँ.
x^{2}-11x+10=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 10}}{2}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 10}}{2}
वर्गमूल -11.
x=\frac{-\left(-11\right)±\sqrt{121-40}}{2}
-4 को 10 बार गुणा करें.
x=\frac{-\left(-11\right)±\sqrt{81}}{2}
121 में -40 को जोड़ें.
x=\frac{-\left(-11\right)±9}{2}
81 का वर्गमूल लें.
x=\frac{11±9}{2}
-11 का विपरीत 11 है.
x=\frac{20}{2}
± के धन में होने पर अब समीकरण x=\frac{11±9}{2} को हल करें. 11 में 9 को जोड़ें.
x=10
2 को 20 से विभाजित करें.
x=\frac{2}{2}
± के ऋण में होने पर अब समीकरण x=\frac{11±9}{2} को हल करें. 11 में से 9 को घटाएं.
x=1
2 को 2 से विभाजित करें.
x^{2}-11x+10=\left(x-10\right)\left(x-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए 10 और x_{2} के लिए 1 स्थानापन्न है.