x के लिए हल करें
x=6
x=-6
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
x^{2}-10-26=0
दोनों ओर से 26 घटाएँ.
x^{2}-36=0
-36 प्राप्त करने के लिए 26 में से -10 घटाएं.
\left(x-6\right)\left(x+6\right)=0
x^{2}-36 पर विचार करें. x^{2}-36 को x^{2}-6^{2} के रूप में फिर से लिखें. वर्गों का अंतर को इस नियम को उपयोग करके भाज्य किया जा सकता है: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=6 x=-6
समीकरण समाधानों को ढूँढने के लिए, x-6=0 और x+6=0 को हल करें.
x^{2}=26+10
दोनों ओर 10 जोड़ें.
x^{2}=36
36 को प्राप्त करने के लिए 26 और 10 को जोड़ें.
x=6 x=-6
समीकरण के दोनों ओर का वर्गमूल लें.
x^{2}-10-26=0
दोनों ओर से 26 घटाएँ.
x^{2}-36=0
-36 प्राप्त करने के लिए 26 में से -10 घटाएं.
x=\frac{0±\sqrt{0^{2}-4\left(-36\right)}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए 0 और द्विघात सूत्र में c के लिए -36, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-36\right)}}{2}
वर्गमूल 0.
x=\frac{0±\sqrt{144}}{2}
-4 को -36 बार गुणा करें.
x=\frac{0±12}{2}
144 का वर्गमूल लें.
x=6
± के धन में होने पर अब समीकरण x=\frac{0±12}{2} को हल करें. 2 को 12 से विभाजित करें.
x=-6
± के ऋण में होने पर अब समीकरण x=\frac{0±12}{2} को हल करें. 2 को -12 से विभाजित करें.
x=6 x=-6
अब समीकरण का समाधान हो गया है.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}