x के लिए हल करें
x=-97
x=96
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
a+b=1 ab=-9312
समीकरण को हल करने के लिए, सूत्र x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) का उपयोग करके x^{2}+x-9312 फ़ैक्टर. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,9312 -2,4656 -3,3104 -4,2328 -6,1552 -8,1164 -12,776 -16,582 -24,388 -32,291 -48,194 -96,97
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b धनात्मक है, धनात्मक संख्या में ऋणात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -9312 देते हैं.
-1+9312=9311 -2+4656=4654 -3+3104=3101 -4+2328=2324 -6+1552=1546 -8+1164=1156 -12+776=764 -16+582=566 -24+388=364 -32+291=259 -48+194=146 -96+97=1
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-96 b=97
हल वह जोड़ी है जो 1 योग देती है.
\left(x-96\right)\left(x+97\right)
प्राप्त किए गए मानों का उपयोग कर \left(x+a\right)\left(x+b\right) फ़ैक्टरी व्यंजक को फिर से लिखें.
x=96 x=-97
समीकरण समाधानों को ढूँढने के लिए, x-96=0 और x+97=0 को हल करें.
a+b=1 ab=1\left(-9312\right)=-9312
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर x^{2}+ax+bx-9312 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,9312 -2,4656 -3,3104 -4,2328 -6,1552 -8,1164 -12,776 -16,582 -24,388 -32,291 -48,194 -96,97
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b धनात्मक है, धनात्मक संख्या में ऋणात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -9312 देते हैं.
-1+9312=9311 -2+4656=4654 -3+3104=3101 -4+2328=2324 -6+1552=1546 -8+1164=1156 -12+776=764 -16+582=566 -24+388=364 -32+291=259 -48+194=146 -96+97=1
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-96 b=97
हल वह जोड़ी है जो 1 योग देती है.
\left(x^{2}-96x\right)+\left(97x-9312\right)
x^{2}+x-9312 को \left(x^{2}-96x\right)+\left(97x-9312\right) के रूप में फिर से लिखें.
x\left(x-96\right)+97\left(x-96\right)
पहले समूह में x के और दूसरे समूह में 97 को गुणनखंड बनाएँ.
\left(x-96\right)\left(x+97\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-96 के गुणनखंड बनाएँ.
x=96 x=-97
समीकरण समाधानों को ढूँढने के लिए, x-96=0 और x+97=0 को हल करें.
x^{2}+x-9312=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-1±\sqrt{1^{2}-4\left(-9312\right)}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए 1 और द्विघात सूत्र में c के लिए -9312, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-9312\right)}}{2}
वर्गमूल 1.
x=\frac{-1±\sqrt{1+37248}}{2}
-4 को -9312 बार गुणा करें.
x=\frac{-1±\sqrt{37249}}{2}
1 में 37248 को जोड़ें.
x=\frac{-1±193}{2}
37249 का वर्गमूल लें.
x=\frac{192}{2}
± के धन में होने पर अब समीकरण x=\frac{-1±193}{2} को हल करें. -1 में 193 को जोड़ें.
x=96
2 को 192 से विभाजित करें.
x=-\frac{194}{2}
± के ऋण में होने पर अब समीकरण x=\frac{-1±193}{2} को हल करें. -1 में से 193 को घटाएं.
x=-97
2 को -194 से विभाजित करें.
x=96 x=-97
अब समीकरण का समाधान हो गया है.
x^{2}+x-9312=0
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
x^{2}+x-9312-\left(-9312\right)=-\left(-9312\right)
समीकरण के दोनों ओर 9312 जोड़ें.
x^{2}+x=-\left(-9312\right)
-9312 को इसी से घटाने से 0 मिलता है.
x^{2}+x=9312
0 में से -9312 को घटाएं.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=9312+\left(\frac{1}{2}\right)^{2}
\frac{1}{2} प्राप्त करने के लिए x पद के गुणांक 1 को 2 से भाग दें. फिर समीकरण के दोनों ओर \frac{1}{2} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}+x+\frac{1}{4}=9312+\frac{1}{4}
भिन्न के अंश और हर दोनों का वर्गमूल करके \frac{1}{2} का वर्ग करें.
x^{2}+x+\frac{1}{4}=\frac{37249}{4}
9312 में \frac{1}{4} को जोड़ें.
\left(x+\frac{1}{2}\right)^{2}=\frac{37249}{4}
गुणक x^{2}+x+\frac{1}{4}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{37249}{4}}
समीकरण के दोनों ओर का वर्गमूल लें.
x+\frac{1}{2}=\frac{193}{2} x+\frac{1}{2}=-\frac{193}{2}
सरल बनाएं.
x=96 x=-97
समीकरण के दोनों ओर से \frac{1}{2} घटाएं.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}