मुख्य सामग्री पर जाएं
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

a+b=6 ab=-40
समीकरण को हल करने के लिए, सूत्र x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) का उपयोग करके x^{2}+6x-40 फ़ैक्टर. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,40 -2,20 -4,10 -5,8
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b धनात्मक है, धनात्मक संख्या में ऋणात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -40 देते हैं.
-1+40=39 -2+20=18 -4+10=6 -5+8=3
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-4 b=10
हल वह जोड़ी है जो 6 योग देती है.
\left(x-4\right)\left(x+10\right)
प्राप्त किए गए मानों का उपयोग कर \left(x+a\right)\left(x+b\right) फ़ैक्टरी व्यंजक को फिर से लिखें.
x=4 x=-10
समीकरण समाधानों को ढूँढने के लिए, x-4=0 और x+10=0 को हल करें.
a+b=6 ab=1\left(-40\right)=-40
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर x^{2}+ax+bx-40 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,40 -2,20 -4,10 -5,8
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b धनात्मक है, धनात्मक संख्या में ऋणात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -40 देते हैं.
-1+40=39 -2+20=18 -4+10=6 -5+8=3
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-4 b=10
हल वह जोड़ी है जो 6 योग देती है.
\left(x^{2}-4x\right)+\left(10x-40\right)
x^{2}+6x-40 को \left(x^{2}-4x\right)+\left(10x-40\right) के रूप में फिर से लिखें.
x\left(x-4\right)+10\left(x-4\right)
पहले समूह में x के और दूसरे समूह में 10 को गुणनखंड बनाएँ.
\left(x-4\right)\left(x+10\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-4 के गुणनखंड बनाएँ.
x=4 x=-10
समीकरण समाधानों को ढूँढने के लिए, x-4=0 और x+10=0 को हल करें.
x^{2}+6x-40=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-6±\sqrt{6^{2}-4\left(-40\right)}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए 6 और द्विघात सूत्र में c के लिए -40, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-40\right)}}{2}
वर्गमूल 6.
x=\frac{-6±\sqrt{36+160}}{2}
-4 को -40 बार गुणा करें.
x=\frac{-6±\sqrt{196}}{2}
36 में 160 को जोड़ें.
x=\frac{-6±14}{2}
196 का वर्गमूल लें.
x=\frac{8}{2}
± के धन में होने पर अब समीकरण x=\frac{-6±14}{2} को हल करें. -6 में 14 को जोड़ें.
x=4
2 को 8 से विभाजित करें.
x=-\frac{20}{2}
± के ऋण में होने पर अब समीकरण x=\frac{-6±14}{2} को हल करें. -6 में से 14 को घटाएं.
x=-10
2 को -20 से विभाजित करें.
x=4 x=-10
अब समीकरण का समाधान हो गया है.
x^{2}+6x-40=0
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
x^{2}+6x-40-\left(-40\right)=-\left(-40\right)
समीकरण के दोनों ओर 40 जोड़ें.
x^{2}+6x=-\left(-40\right)
-40 को इसी से घटाने से 0 मिलता है.
x^{2}+6x=40
0 में से -40 को घटाएं.
x^{2}+6x+3^{2}=40+3^{2}
3 प्राप्त करने के लिए x पद के गुणांक 6 को 2 से भाग दें. फिर समीकरण के दोनों ओर 3 का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}+6x+9=40+9
वर्गमूल 3.
x^{2}+6x+9=49
40 में 9 को जोड़ें.
\left(x+3\right)^{2}=49
गुणक x^{2}+6x+9. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x+3\right)^{2}}=\sqrt{49}
समीकरण के दोनों ओर का वर्गमूल लें.
x+3=7 x+3=-7
सरल बनाएं.
x=4 x=-10
समीकरण के दोनों ओर से 3 घटाएं.