मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

a+b=4 ab=1\times 3=3
समूहीकरण द्वारा व्यंजक को फ़ैक्टर करें. सबसे पहले, व्यंजक को x^{2}+ax+bx+3 के रूप में फिर से लिखा जाना आवश्यक है. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
a=1 b=3
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूंकि a+b सकारात्मक है, a और b दोनों सकारात्मक हैं. केवल ऐसी जोड़ी सिस्टम हल है.
\left(x^{2}+x\right)+\left(3x+3\right)
x^{2}+4x+3 को \left(x^{2}+x\right)+\left(3x+3\right) के रूप में फिर से लिखें.
x\left(x+1\right)+3\left(x+1\right)
पहले समूह में x के और दूसरे समूह में 3 को गुणनखंड बनाएँ.
\left(x+1\right)\left(x+3\right)
विभाजन के गुण का उपयोग करके सामान्य पद x+1 के गुणनखंड बनाएँ.
x^{2}+4x+3=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-4±\sqrt{4^{2}-4\times 3}}{2}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-4±\sqrt{16-4\times 3}}{2}
वर्गमूल 4.
x=\frac{-4±\sqrt{16-12}}{2}
-4 को 3 बार गुणा करें.
x=\frac{-4±\sqrt{4}}{2}
16 में -12 को जोड़ें.
x=\frac{-4±2}{2}
4 का वर्गमूल लें.
x=-\frac{2}{2}
± के धन में होने पर अब समीकरण x=\frac{-4±2}{2} को हल करें. -4 में 2 को जोड़ें.
x=-1
2 को -2 से विभाजित करें.
x=-\frac{6}{2}
± के ऋण में होने पर अब समीकरण x=\frac{-4±2}{2} को हल करें. -4 में से 2 को घटाएं.
x=-3
2 को -6 से विभाजित करें.
x^{2}+4x+3=\left(x-\left(-1\right)\right)\left(x-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए -1 और x_{2} के लिए -3 स्थानापन्न है.
x^{2}+4x+3=\left(x+1\right)\left(x+3\right)
प्रपत्र के सभी व्यंजकों को p-\left(-q\right) से p+q तक सरलीकृत करें.