x के लिए हल करें
x=-2
x=-1
x=2
x=-5
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
x\left(x+3\right)x^{2}+3xx\left(x+3\right)-20=8x\left(x+3\right)
चर x, -3,0 मानों में से किसी के भी बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों को x\left(x+3\right) से गुणा करें.
\left(x^{2}+3x\right)x^{2}+3xx\left(x+3\right)-20=8x\left(x+3\right)
x+3 से x गुणा करने हेतु बंटन के गुण का उपयोग करें.
x^{4}+3x^{3}+3xx\left(x+3\right)-20=8x\left(x+3\right)
x^{2} से x^{2}+3x गुणा करने हेतु बंटन के गुण का उपयोग करें.
x^{4}+3x^{3}+3x^{2}\left(x+3\right)-20=8x\left(x+3\right)
x^{2} प्राप्त करने के लिए x और x का गुणा करें.
x^{4}+3x^{3}+3x^{3}+9x^{2}-20=8x\left(x+3\right)
x+3 से 3x^{2} गुणा करने हेतु बंटन के गुण का उपयोग करें.
x^{4}+6x^{3}+9x^{2}-20=8x\left(x+3\right)
6x^{3} प्राप्त करने के लिए 3x^{3} और 3x^{3} संयोजित करें.
x^{4}+6x^{3}+9x^{2}-20=8x^{2}+24x
x+3 से 8x गुणा करने हेतु बंटन के गुण का उपयोग करें.
x^{4}+6x^{3}+9x^{2}-20-8x^{2}=24x
दोनों ओर से 8x^{2} घटाएँ.
x^{4}+6x^{3}+x^{2}-20=24x
x^{2} प्राप्त करने के लिए 9x^{2} और -8x^{2} संयोजित करें.
x^{4}+6x^{3}+x^{2}-20-24x=0
दोनों ओर से 24x घटाएँ.
x^{4}+6x^{3}+x^{2}-24x-20=0
समीकरण को मानक रूप में रखने के लिए इसे पुनर्व्यवस्थित करें. पद को उच्चतम से निम्नतम घात के क्रम में रखें.
±20,±10,±5,±4,±2,±1
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द -20 को विभाजित करती है और q अग्रणी गुणांक 1 को विभाजित करती है. \frac{p}{q} सभी उंमीदवारों की सूची.
x=-1
निरपेक्ष मान के द्वारा छोटे से प्रारंभ करके, सभी पूर्णांक मानों को आज़माकर एक जैसे रूट ढूँढें. यदि कोई पूर्णांक जड़ें नहीं मिलती हैं, तो भिन्नों को आज़माएँ.
x^{3}+5x^{2}-4x-20=0
फ़ैक्टर प्रमेय के द्वारा, x-k प्रत्येक रूट k के लिए बहुपद का एक फ़ैक्टर है. x^{3}+5x^{2}-4x-20 प्राप्त करने के लिए x^{4}+6x^{3}+x^{2}-24x-20 को x+1 से विभाजित करें. समीकरण को हल करें जहाँ परिणाम 0 के बराबर हो.
±20,±10,±5,±4,±2,±1
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द -20 को विभाजित करती है और q अग्रणी गुणांक 1 को विभाजित करती है. \frac{p}{q} सभी उंमीदवारों की सूची.
x=2
निरपेक्ष मान के द्वारा छोटे से प्रारंभ करके, सभी पूर्णांक मानों को आज़माकर एक जैसे रूट ढूँढें. यदि कोई पूर्णांक जड़ें नहीं मिलती हैं, तो भिन्नों को आज़माएँ.
x^{2}+7x+10=0
फ़ैक्टर प्रमेय के द्वारा, x-k प्रत्येक रूट k के लिए बहुपद का एक फ़ैक्टर है. x^{2}+7x+10 प्राप्त करने के लिए x^{3}+5x^{2}-4x-20 को x-2 से विभाजित करें. समीकरण को हल करें जहाँ परिणाम 0 के बराबर हो.
x=\frac{-7±\sqrt{7^{2}-4\times 1\times 10}}{2}
प्रपत्र ax^{2}+bx+c=0 के सभी समीकरणों को \frac{-b±\sqrt{b^{2}-4ac}}{2a} द्विघात सूत्र का उपयोग करके हल किया जा सकता है. द्विघात सूत्र में a के लिए 1, b के लिए 7, और c के लिए 10 प्रतिस्थापित करें.
x=\frac{-7±3}{2}
परिकलन करें.
x=-5 x=-2
समीकरण x^{2}+7x+10=0 को हल करें जब ± धन है और जब ± ऋण है.
x=-1 x=2 x=-5 x=-2
सभी मिले हुए समाधानों की सूची.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}