मुख्य सामग्री पर जाएं
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

x^{2}+2x+1=0
दोनों ओर 1 जोड़ें.
a+b=2 ab=1
समीकरण को हल करने के लिए, सूत्र x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) का उपयोग करके x^{2}+2x+1 फ़ैक्टर. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
a=1 b=1
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूंकि a+b सकारात्मक है, a और b दोनों सकारात्मक हैं. केवल ऐसी जोड़ी सिस्टम समाधान है.
\left(x+1\right)\left(x+1\right)
प्राप्त किए गए मानों का उपयोग कर \left(x+a\right)\left(x+b\right) फ़ैक्टरी व्यंजक को फिर से लिखें.
\left(x+1\right)^{2}
द्विपद वर्ग के रूप में फिर से लिखें.
x=-1
समीकरण के हल ढूँढने के लिए, x+1=0 को हल करें.
x^{2}+2x+1=0
दोनों ओर 1 जोड़ें.
a+b=2 ab=1\times 1=1
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर x^{2}+ax+bx+1 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
a=1 b=1
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूंकि a+b सकारात्मक है, a और b दोनों सकारात्मक हैं. केवल ऐसी जोड़ी सिस्टम समाधान है.
\left(x^{2}+x\right)+\left(x+1\right)
x^{2}+2x+1 को \left(x^{2}+x\right)+\left(x+1\right) के रूप में फिर से लिखें.
x\left(x+1\right)+x+1
x^{2}+x में x को गुणनखंड बनाएँ.
\left(x+1\right)\left(x+1\right)
विभाजन के गुण का उपयोग करके सामान्य पद x+1 के गुणनखंड बनाएँ.
\left(x+1\right)^{2}
द्विपद वर्ग के रूप में फिर से लिखें.
x=-1
समीकरण के हल ढूँढने के लिए, x+1=0 को हल करें.
x^{2}+2x=-1
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x^{2}+2x-\left(-1\right)=-1-\left(-1\right)
समीकरण के दोनों ओर 1 जोड़ें.
x^{2}+2x-\left(-1\right)=0
-1 को इसी से घटाने से 0 मिलता है.
x^{2}+2x+1=0
0 में से -1 को घटाएं.
x=\frac{-2±\sqrt{2^{2}-4}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए 2 और द्विघात सूत्र में c के लिए 1, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4}}{2}
वर्गमूल 2.
x=\frac{-2±\sqrt{0}}{2}
4 में -4 को जोड़ें.
x=-\frac{2}{2}
0 का वर्गमूल लें.
x=-1
2 को -2 से विभाजित करें.
x^{2}+2x=-1
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
x^{2}+2x+1^{2}=-1+1^{2}
1 प्राप्त करने के लिए x पद के गुणांक 2 को 2 से भाग दें. फिर समीकरण के दोनों ओर 1 का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}+2x+1=-1+1
वर्गमूल 1.
x^{2}+2x+1=0
-1 में 1 को जोड़ें.
\left(x+1\right)^{2}=0
गुणक x^{2}+2x+1. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x+1\right)^{2}}=\sqrt{0}
समीकरण के दोनों ओर का वर्गमूल लें.
x+1=0 x+1=0
सरल बनाएं.
x=-1 x=-1
समीकरण के दोनों ओर से 1 घटाएं.
x=-1
अब समीकरण का समाधान हो गया है. हल समान होते हैं.