x के लिए हल करें
x=-3
x=1
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
x^{2}+2x+5-8=0
दोनों ओर से 8 घटाएँ.
x^{2}+2x-3=0
-3 प्राप्त करने के लिए 8 में से 5 घटाएं.
a+b=2 ab=-3
समीकरण को हल करने के लिए, सूत्र x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) का उपयोग करके x^{2}+2x-3 फ़ैक्टर. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
a=-1 b=3
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b धनात्मक है, धनात्मक संख्या में ऋणात्मक से अधिक निरपेक्ष मान है. केवल ऐसी जोड़ी सिस्टम समाधान है.
\left(x-1\right)\left(x+3\right)
प्राप्त किए गए मानों का उपयोग कर \left(x+a\right)\left(x+b\right) फ़ैक्टरी व्यंजक को फिर से लिखें.
x=1 x=-3
समीकरण समाधानों को ढूँढने के लिए, x-1=0 और x+3=0 को हल करें.
x^{2}+2x+5-8=0
दोनों ओर से 8 घटाएँ.
x^{2}+2x-3=0
-3 प्राप्त करने के लिए 8 में से 5 घटाएं.
a+b=2 ab=1\left(-3\right)=-3
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर x^{2}+ax+bx-3 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
a=-1 b=3
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b धनात्मक है, धनात्मक संख्या में ऋणात्मक से अधिक निरपेक्ष मान है. केवल ऐसी जोड़ी सिस्टम समाधान है.
\left(x^{2}-x\right)+\left(3x-3\right)
x^{2}+2x-3 को \left(x^{2}-x\right)+\left(3x-3\right) के रूप में फिर से लिखें.
x\left(x-1\right)+3\left(x-1\right)
पहले समूह में x के और दूसरे समूह में 3 को गुणनखंड बनाएँ.
\left(x-1\right)\left(x+3\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-1 के गुणनखंड बनाएँ.
x=1 x=-3
समीकरण समाधानों को ढूँढने के लिए, x-1=0 और x+3=0 को हल करें.
x^{2}+2x+5=8
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x^{2}+2x+5-8=8-8
समीकरण के दोनों ओर से 8 घटाएं.
x^{2}+2x+5-8=0
8 को इसी से घटाने से 0 मिलता है.
x^{2}+2x-3=0
5 में से 8 को घटाएं.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए 2 और द्विघात सूत्र में c के लिए -3, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3\right)}}{2}
वर्गमूल 2.
x=\frac{-2±\sqrt{4+12}}{2}
-4 को -3 बार गुणा करें.
x=\frac{-2±\sqrt{16}}{2}
4 में 12 को जोड़ें.
x=\frac{-2±4}{2}
16 का वर्गमूल लें.
x=\frac{2}{2}
± के धन में होने पर अब समीकरण x=\frac{-2±4}{2} को हल करें. -2 में 4 को जोड़ें.
x=1
2 को 2 से विभाजित करें.
x=-\frac{6}{2}
± के ऋण में होने पर अब समीकरण x=\frac{-2±4}{2} को हल करें. -2 में से 4 को घटाएं.
x=-3
2 को -6 से विभाजित करें.
x=1 x=-3
अब समीकरण का समाधान हो गया है.
x^{2}+2x+5=8
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
x^{2}+2x+5-5=8-5
समीकरण के दोनों ओर से 5 घटाएं.
x^{2}+2x=8-5
5 को इसी से घटाने से 0 मिलता है.
x^{2}+2x=3
8 में से 5 को घटाएं.
x^{2}+2x+1^{2}=3+1^{2}
1 प्राप्त करने के लिए x पद के गुणांक 2 को 2 से भाग दें. फिर समीकरण के दोनों ओर 1 का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}+2x+1=3+1
वर्गमूल 1.
x^{2}+2x+1=4
3 में 1 को जोड़ें.
\left(x+1\right)^{2}=4
गुणक x^{2}+2x+1. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
समीकरण के दोनों ओर का वर्गमूल लें.
x+1=2 x+1=-2
सरल बनाएं.
x=1 x=-3
समीकरण के दोनों ओर से 1 घटाएं.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}