x के लिए हल करें
x=\sqrt{3}\approx 1.732050808
x=-\sqrt{3}\approx -1.732050808
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
x^{2}+1=2^{2}
2 की घात की -1 से गणना करें और 1 प्राप्त करें.
x^{2}+1=4
2 की घात की 2 से गणना करें और 4 प्राप्त करें.
x^{2}=4-1
दोनों ओर से 1 घटाएँ.
x^{2}=3
3 प्राप्त करने के लिए 1 में से 4 घटाएं.
x=\sqrt{3} x=-\sqrt{3}
समीकरण के दोनों ओर का वर्गमूल लें.
x^{2}+1=2^{2}
2 की घात की -1 से गणना करें और 1 प्राप्त करें.
x^{2}+1=4
2 की घात की 2 से गणना करें और 4 प्राप्त करें.
x^{2}+1-4=0
दोनों ओर से 4 घटाएँ.
x^{2}-3=0
-3 प्राप्त करने के लिए 4 में से 1 घटाएं.
x=\frac{0±\sqrt{0^{2}-4\left(-3\right)}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए 0 और द्विघात सूत्र में c के लिए -3, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-3\right)}}{2}
वर्गमूल 0.
x=\frac{0±\sqrt{12}}{2}
-4 को -3 बार गुणा करें.
x=\frac{0±2\sqrt{3}}{2}
12 का वर्गमूल लें.
x=\sqrt{3}
± के धन में होने पर अब समीकरण x=\frac{0±2\sqrt{3}}{2} को हल करें.
x=-\sqrt{3}
± के ऋण में होने पर अब समीकरण x=\frac{0±2\sqrt{3}}{2} को हल करें.
x=\sqrt{3} x=-\sqrt{3}
अब समीकरण का समाधान हो गया है.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}