मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

\left(x^{6}-1\right)\left(x^{6}+1\right)
x^{12}-1 को \left(x^{6}\right)^{2}-1^{2} के रूप में फिर से लिखें. वर्गों का अंतर को इस नियम को उपयोग करके भाज्य किया जा सकता है: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{3}-1\right)\left(x^{3}+1\right)
x^{6}-1 पर विचार करें. x^{6}-1 को \left(x^{3}\right)^{2}-1^{2} के रूप में फिर से लिखें. वर्गों का अंतर को इस नियम को उपयोग करके भाज्य किया जा सकता है: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-1\right)\left(x^{2}+x+1\right)
x^{3}-1 पर विचार करें. x^{3}-1 को x^{3}-1^{3} के रूप में फिर से लिखें. क्यूब के अंतर को इस नियम का उपयोग करके भाज्य नहीं किया जा सकता: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(x+1\right)\left(x^{2}-x+1\right)
x^{3}+1 पर विचार करें. x^{3}+1 को x^{3}+1^{3} के रूप में फिर से लिखें. क्यूब के योग को इस नियम का उपयोग करके भाज्य नहीं किया जा सकता: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)
x^{6}+1 पर विचार करें. x^{6}+1 को \left(x^{2}\right)^{3}+1^{3} के रूप में फिर से लिखें. क्यूब के योग को इस नियम का उपयोग करके भाज्य नहीं किया जा सकता: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x-1\right)\left(x^{2}-x+1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{4}-x^{2}+1\right)\left(x^{2}+1\right)
पूर्ण फ़ैक्टर व्यंजक को फिर से लिखें. निम्न पॉलिनॉमियल फ़ैक्टर नहीं किया गया हैं क्योंकि उनके पास कोई परिमेय बहुपद का मूल नहीं हैं: x^{2}-x+1,x^{2}+x+1,x^{4}-x^{2}+1,x^{2}+1.