x = x ^ { 2 } d x =
d के लिए हल करें (जटिल समाधान)
\left\{\begin{matrix}d=\frac{1}{x^{2}}\text{, }&x\neq 0\\d\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
d के लिए हल करें
\left\{\begin{matrix}d=\frac{1}{x^{2}}\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
x के लिए हल करें (जटिल समाधान)
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=-d^{-\frac{1}{2}}\text{; }x=d^{-\frac{1}{2}}\text{, }&d\neq 0\end{matrix}\right.
x के लिए हल करें
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=\frac{1}{\sqrt{d}}\text{; }x=-\frac{1}{\sqrt{d}}\text{, }&d>0\end{matrix}\right.
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
x=x^{3}d
समान आधार की घातों को गुणा करने के लिए उनके घातांकों को जोड़ें. 3 प्राप्त करने के लिए 2 और 1 को जोड़ें.
x^{3}d=x
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
\frac{x^{3}d}{x^{3}}=\frac{x}{x^{3}}
दोनों ओर x^{3} से विभाजन करें.
d=\frac{x}{x^{3}}
x^{3} से विभाजित करना x^{3} से गुणा करने को पूर्ववत् करता है.
d=\frac{1}{x^{2}}
x^{3} को x से विभाजित करें.
x=x^{3}d
समान आधार की घातों को गुणा करने के लिए उनके घातांकों को जोड़ें. 3 प्राप्त करने के लिए 2 और 1 को जोड़ें.
x^{3}d=x
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
\frac{x^{3}d}{x^{3}}=\frac{x}{x^{3}}
दोनों ओर x^{3} से विभाजन करें.
d=\frac{x}{x^{3}}
x^{3} से विभाजित करना x^{3} से गुणा करने को पूर्ववत् करता है.
d=\frac{1}{x^{2}}
x^{3} को x से विभाजित करें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}