x के लिए हल करें
x=\frac{1}{3}\approx 0.333333333
x=0
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
x+1=3x^{2}+1
1 को प्राप्त करने के लिए 1 और 0 को जोड़ें.
x+1-3x^{2}=1
दोनों ओर से 3x^{2} घटाएँ.
x+1-3x^{2}-1=0
दोनों ओर से 1 घटाएँ.
x-3x^{2}=0
0 प्राप्त करने के लिए 1 में से 1 घटाएं.
x\left(1-3x\right)=0
x के गुणनखंड बनाएँ.
x=0 x=\frac{1}{3}
समीकरण समाधानों को ढूँढने के लिए, x=0 और 1-3x=0 को हल करें.
x+1=3x^{2}+1
1 को प्राप्त करने के लिए 1 और 0 को जोड़ें.
x+1-3x^{2}=1
दोनों ओर से 3x^{2} घटाएँ.
x+1-3x^{2}-1=0
दोनों ओर से 1 घटाएँ.
x-3x^{2}=0
0 प्राप्त करने के लिए 1 में से 1 घटाएं.
-3x^{2}+x=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-1±\sqrt{1^{2}}}{2\left(-3\right)}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न -3, b के लिए 1 और द्विघात सूत्र में c के लिए 0, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±1}{2\left(-3\right)}
1^{2} का वर्गमूल लें.
x=\frac{-1±1}{-6}
2 को -3 बार गुणा करें.
x=\frac{0}{-6}
± के धन में होने पर अब समीकरण x=\frac{-1±1}{-6} को हल करें. -1 में 1 को जोड़ें.
x=0
-6 को 0 से विभाजित करें.
x=-\frac{2}{-6}
± के ऋण में होने पर अब समीकरण x=\frac{-1±1}{-6} को हल करें. -1 में से 1 को घटाएं.
x=\frac{1}{3}
2 को निकालकर और रद्द करके भिन्न \frac{-2}{-6} को न्यूनतम पदों तक कम करें.
x=0 x=\frac{1}{3}
अब समीकरण का समाधान हो गया है.
x+1=3x^{2}+1
1 को प्राप्त करने के लिए 1 और 0 को जोड़ें.
x+1-3x^{2}=1
दोनों ओर से 3x^{2} घटाएँ.
x-3x^{2}=1-1
दोनों ओर से 1 घटाएँ.
x-3x^{2}=0
0 प्राप्त करने के लिए 1 में से 1 घटाएं.
-3x^{2}+x=0
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
\frac{-3x^{2}+x}{-3}=\frac{0}{-3}
दोनों ओर -3 से विभाजन करें.
x^{2}+\frac{1}{-3}x=\frac{0}{-3}
-3 से विभाजित करना -3 से गुणा करने को पूर्ववत् करता है.
x^{2}-\frac{1}{3}x=\frac{0}{-3}
-3 को 1 से विभाजित करें.
x^{2}-\frac{1}{3}x=0
-3 को 0 से विभाजित करें.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\left(-\frac{1}{6}\right)^{2}
-\frac{1}{6} प्राप्त करने के लिए x पद के गुणांक -\frac{1}{3} को 2 से भाग दें. फिर समीकरण के दोनों ओर -\frac{1}{6} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{1}{36}
भिन्न के अंश और हर दोनों का वर्गमूल करके -\frac{1}{6} का वर्ग करें.
\left(x-\frac{1}{6}\right)^{2}=\frac{1}{36}
गुणक x^{2}-\frac{1}{3}x+\frac{1}{36}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
समीकरण के दोनों ओर का वर्गमूल लें.
x-\frac{1}{6}=\frac{1}{6} x-\frac{1}{6}=-\frac{1}{6}
सरल बनाएं.
x=\frac{1}{3} x=0
समीकरण के दोनों ओर \frac{1}{6} जोड़ें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}