मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

a+b=-5 ab=2\left(-3\right)=-6
समूहीकरण द्वारा व्यंजक को फ़ैक्टर करें. सबसे पहले, व्यंजक को 2x^{2}+ax+bx-3 के रूप में फिर से लिखा जाना आवश्यक है. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,-6 2,-3
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b ऋणात्मक है, इसलिए ऋणात्मक संख्या में धनात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -6 देते हैं.
1-6=-5 2-3=-1
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-6 b=1
हल वह जोड़ी है जो -5 योग देती है.
\left(2x^{2}-6x\right)+\left(x-3\right)
2x^{2}-5x-3 को \left(2x^{2}-6x\right)+\left(x-3\right) के रूप में फिर से लिखें.
2x\left(x-3\right)+x-3
2x^{2}-6x में 2x को गुणनखंड बनाएँ.
\left(x-3\right)\left(2x+1\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-3 के गुणनखंड बनाएँ.
2x^{2}-5x-3=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
वर्गमूल -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
-4 को 2 बार गुणा करें.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
-8 को -3 बार गुणा करें.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
25 में 24 को जोड़ें.
x=\frac{-\left(-5\right)±7}{2\times 2}
49 का वर्गमूल लें.
x=\frac{5±7}{2\times 2}
-5 का विपरीत 5 है.
x=\frac{5±7}{4}
2 को 2 बार गुणा करें.
x=\frac{12}{4}
± के धन में होने पर अब समीकरण x=\frac{5±7}{4} को हल करें. 5 में 7 को जोड़ें.
x=3
4 को 12 से विभाजित करें.
x=-\frac{2}{4}
± के ऋण में होने पर अब समीकरण x=\frac{5±7}{4} को हल करें. 5 में से 7 को घटाएं.
x=-\frac{1}{2}
2 को निकालकर और रद्द करके भिन्न \frac{-2}{4} को न्यूनतम पदों तक कम करें.
2x^{2}-5x-3=2\left(x-3\right)\left(x-\left(-\frac{1}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए 3 और x_{2} के लिए -\frac{1}{2} स्थानापन्न है.
2x^{2}-5x-3=2\left(x-3\right)\left(x+\frac{1}{2}\right)
प्रपत्र के सभी व्यंजकों को p-\left(-q\right) से p+q तक सरलीकृत करें.
2x^{2}-5x-3=2\left(x-3\right)\times \frac{2x+1}{2}
सामान्य हरों का पता लगाकर और अंशों को जोड़कर \frac{1}{2} में x जोड़ें. फिर यदि संभव हो तो न्यूनतम पद के भिन्न को कम करें.
2x^{2}-5x-3=\left(x-3\right)\left(2x+1\right)
2 और 2 में महत्तम समापवर्तक 2 को रद्द कर दें.