Q के लिए हल करें (जटिल समाधान)
\left\{\begin{matrix}Q=-\frac{16\left(x-4\right)}{b^{2}}\text{, }&b\neq 0\\Q\in \mathrm{C}\text{, }&x=4\text{ and }b=0\end{matrix}\right.
Q के लिए हल करें
\left\{\begin{matrix}Q=-\frac{16\left(x-4\right)}{b^{2}}\text{, }&b\neq 0\\Q\in \mathrm{R}\text{, }&x=4\text{ and }b=0\end{matrix}\right.
b के लिए हल करें (जटिल समाधान)
\left\{\begin{matrix}b=-4iQ^{-\frac{1}{2}}\sqrt{x-4}\text{; }b=4iQ^{-\frac{1}{2}}\sqrt{x-4}\text{, }&Q\neq 0\\b\in \mathrm{C}\text{, }&x=4\text{ and }Q=0\end{matrix}\right.
b के लिए हल करें
\left\{\begin{matrix}b=4\sqrt{-\frac{x-4}{Q}}\text{; }b=-4\sqrt{-\frac{x-4}{Q}}\text{, }&\left(Q>0\text{ and }x\leq 4\right)\text{ or }\left(x\geq 4\text{ and }Q<0\right)\\b\in \mathrm{R}\text{, }&x=4\text{ and }Q=0\end{matrix}\right.
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
Qb^{2}+x^{2}=64-16x+x^{2}
\left(8-x\right)^{2} को विस्तृत करने के लिए द्विपद प्रमेय \left(a-b\right)^{2}=a^{2}-2ab+b^{2} का उपयोग करें.
Qb^{2}=64-16x+x^{2}-x^{2}
दोनों ओर से x^{2} घटाएँ.
Qb^{2}=64-16x
0 प्राप्त करने के लिए x^{2} और -x^{2} संयोजित करें.
b^{2}Q=64-16x
समीकरण मानक रूप में है.
\frac{b^{2}Q}{b^{2}}=\frac{64-16x}{b^{2}}
दोनों ओर b^{2} से विभाजन करें.
Q=\frac{64-16x}{b^{2}}
b^{2} से विभाजित करना b^{2} से गुणा करने को पूर्ववत् करता है.
Q=\frac{16\left(4-x\right)}{b^{2}}
b^{2} को 64-16x से विभाजित करें.
Qb^{2}+x^{2}=64-16x+x^{2}
\left(8-x\right)^{2} को विस्तृत करने के लिए द्विपद प्रमेय \left(a-b\right)^{2}=a^{2}-2ab+b^{2} का उपयोग करें.
Qb^{2}=64-16x+x^{2}-x^{2}
दोनों ओर से x^{2} घटाएँ.
Qb^{2}=64-16x
0 प्राप्त करने के लिए x^{2} और -x^{2} संयोजित करें.
b^{2}Q=64-16x
समीकरण मानक रूप में है.
\frac{b^{2}Q}{b^{2}}=\frac{64-16x}{b^{2}}
दोनों ओर b^{2} से विभाजन करें.
Q=\frac{64-16x}{b^{2}}
b^{2} से विभाजित करना b^{2} से गुणा करने को पूर्ववत् करता है.
Q=\frac{16\left(4-x\right)}{b^{2}}
b^{2} को 64-16x से विभाजित करें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}