P के लिए हल करें
P=12
P=0
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
P^{2}-12P=0
दोनों ओर से 12P घटाएँ.
P\left(P-12\right)=0
P के गुणनखंड बनाएँ.
P=0 P=12
समीकरण समाधानों को ढूँढने के लिए, P=0 और P-12=0 को हल करें.
P^{2}-12P=0
दोनों ओर से 12P घटाएँ.
P=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए -12 और द्विघात सूत्र में c के लिए 0, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
P=\frac{-\left(-12\right)±12}{2}
\left(-12\right)^{2} का वर्गमूल लें.
P=\frac{12±12}{2}
-12 का विपरीत 12 है.
P=\frac{24}{2}
± के धन में होने पर अब समीकरण P=\frac{12±12}{2} को हल करें. 12 में 12 को जोड़ें.
P=12
2 को 24 से विभाजित करें.
P=\frac{0}{2}
± के ऋण में होने पर अब समीकरण P=\frac{12±12}{2} को हल करें. 12 में से 12 को घटाएं.
P=0
2 को 0 से विभाजित करें.
P=12 P=0
अब समीकरण का समाधान हो गया है.
P^{2}-12P=0
दोनों ओर से 12P घटाएँ.
P^{2}-12P+\left(-6\right)^{2}=\left(-6\right)^{2}
-6 प्राप्त करने के लिए x पद के गुणांक -12 को 2 से भाग दें. फिर समीकरण के दोनों ओर -6 का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
P^{2}-12P+36=36
वर्गमूल -6.
\left(P-6\right)^{2}=36
गुणक P^{2}-12P+36. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(P-6\right)^{2}}=\sqrt{36}
समीकरण के दोनों ओर का वर्गमूल लें.
P-6=6 P-6=-6
सरल बनाएं.
P=12 P=0
समीकरण के दोनों ओर 6 जोड़ें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}