गुणनखंड निकालें
3\left(x-1\right)\left(3x-2\right)
मूल्यांकन करें
3\left(x-1\right)\left(3x-2\right)
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
3\left(3x^{2}-5x+2\right)
3 के गुणनखंड बनाएँ.
a+b=-5 ab=3\times 2=6
3x^{2}-5x+2 पर विचार करें. समूहीकरण द्वारा व्यंजक को फ़ैक्टर करें. सबसे पहले, व्यंजक को 3x^{2}+ax+bx+2 के रूप में फिर से लिखा जाना आवश्यक है. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,-6 -2,-3
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूँकि a+b नकारात्मक है, a और b दोनों नकारात्मक हैं. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद 6 देते हैं.
-1-6=-7 -2-3=-5
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-3 b=-2
हल वह जोड़ी है जो -5 योग देती है.
\left(3x^{2}-3x\right)+\left(-2x+2\right)
3x^{2}-5x+2 को \left(3x^{2}-3x\right)+\left(-2x+2\right) के रूप में फिर से लिखें.
3x\left(x-1\right)-2\left(x-1\right)
पहले समूह में 3x के और दूसरे समूह में -2 को गुणनखंड बनाएँ.
\left(x-1\right)\left(3x-2\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-1 के गुणनखंड बनाएँ.
3\left(x-1\right)\left(3x-2\right)
पूर्ण फ़ैक्टर व्यंजक को फिर से लिखें.
9x^{2}-15x+6=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 9\times 6}}{2\times 9}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 9\times 6}}{2\times 9}
वर्गमूल -15.
x=\frac{-\left(-15\right)±\sqrt{225-36\times 6}}{2\times 9}
-4 को 9 बार गुणा करें.
x=\frac{-\left(-15\right)±\sqrt{225-216}}{2\times 9}
-36 को 6 बार गुणा करें.
x=\frac{-\left(-15\right)±\sqrt{9}}{2\times 9}
225 में -216 को जोड़ें.
x=\frac{-\left(-15\right)±3}{2\times 9}
9 का वर्गमूल लें.
x=\frac{15±3}{2\times 9}
-15 का विपरीत 15 है.
x=\frac{15±3}{18}
2 को 9 बार गुणा करें.
x=\frac{18}{18}
± के धन में होने पर अब समीकरण x=\frac{15±3}{18} को हल करें. 15 में 3 को जोड़ें.
x=1
18 को 18 से विभाजित करें.
x=\frac{12}{18}
± के ऋण में होने पर अब समीकरण x=\frac{15±3}{18} को हल करें. 15 में से 3 को घटाएं.
x=\frac{2}{3}
6 को निकालकर और रद्द करके भिन्न \frac{12}{18} को न्यूनतम पदों तक कम करें.
9x^{2}-15x+6=9\left(x-1\right)\left(x-\frac{2}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए 1 और x_{2} के लिए \frac{2}{3} स्थानापन्न है.
9x^{2}-15x+6=9\left(x-1\right)\times \frac{3x-2}{3}
उभयनिष्ठ हर ढूँढकर और अंशों को घटाकर x में से \frac{2}{3} को घटाएँ. फिर यदि संभव हो तो भिन्न को न्यूनतम पद तक कम करें.
9x^{2}-15x+6=3\left(x-1\right)\left(3x-2\right)
9 और 3 में महत्तम समापवर्तक 3 को रद्द कर दें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}