मूल्यांकन करें
\frac{756}{5}=151.2
गुणनखंड निकालें
\frac{2 ^ {2} \cdot 3 ^ {3} \cdot 7}{5} = 151\frac{1}{5} = 151.2
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
9\times \frac{1}{\frac{7}{168}+\frac{3}{168}}
24 और 56 का लघुत्तम समापवर्त्य 168 है. \frac{1}{24} और \frac{1}{56} को 168 हर वाले भिन्न में रूपांतरित करें.
9\times \frac{1}{\frac{7+3}{168}}
चूँकि \frac{7}{168} और \frac{3}{168} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
9\times \frac{1}{\frac{10}{168}}
10 को प्राप्त करने के लिए 7 और 3 को जोड़ें.
9\times \frac{1}{\frac{5}{84}}
2 को निकालकर और रद्द करके भिन्न \frac{10}{168} को न्यूनतम पदों तक कम करें.
9\times 1\times \frac{84}{5}
\frac{5}{84} के व्युत्क्रम से 1 का गुणा करके \frac{5}{84} को 1 से विभाजित करें.
9\times \frac{84}{5}
\frac{84}{5} प्राप्त करने के लिए 1 और \frac{84}{5} का गुणा करें.
\frac{9\times 84}{5}
9\times \frac{84}{5} को एकल भिन्न के रूप में व्यक्त करें.
\frac{756}{5}
756 प्राप्त करने के लिए 9 और 84 का गुणा करें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}