x के लिए हल करें
x\in \mathrm{R}
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
8x^{2}-19x+20=0
असमानता हल करने के लिए, बाएँ हाथ तरफ फ़ैक्टर करें. ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 8\times 20}}{2\times 8}
प्रपत्र ax^{2}+bx+c=0 के सभी समीकरणों को \frac{-b±\sqrt{b^{2}-4ac}}{2a} द्विघात सूत्र का उपयोग करके हल किया जा सकता है. द्विघात सूत्र में a के लिए 8, b के लिए -19, और c के लिए 20 प्रतिस्थापित करें.
x=\frac{19±\sqrt{-279}}{16}
परिकलन करें.
8\times 0^{2}-19\times 0+20=20
चूँकि वास्तविक फ़ील्ड में ऋणात्मक संख्या का वर्गमूल निर्धारित नहीं है, इसलिए कोई हल नहीं है. किसी भी x के लिए अभिव्यक्ति 8x^{2}-19x+20 का समान चिह्न है. चिह्न निर्धारित करने के लिए, x=0 के लिए व्यंजक के मान का परिकलन करें.
x\in \mathrm{R}
व्यंजक का मान 8x^{2}-19x+20 हमेशा सकारात्मक होता है. x\in \mathrm{R} के लिए असमानता है.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}