मुख्य सामग्री पर जाएं
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

8x-4x^{2}=0
दोनों ओर से 4x^{2} घटाएँ.
x\left(8-4x\right)=0
x के गुणनखंड बनाएँ.
x=0 x=2
समीकरण समाधानों को ढूँढने के लिए, x=0 और 8-4x=0 को हल करें.
8x-4x^{2}=0
दोनों ओर से 4x^{2} घटाएँ.
-4x^{2}+8x=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-8±\sqrt{8^{2}}}{2\left(-4\right)}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न -4, b के लिए 8 और द्विघात सूत्र में c के लिए 0, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±8}{2\left(-4\right)}
8^{2} का वर्गमूल लें.
x=\frac{-8±8}{-8}
2 को -4 बार गुणा करें.
x=\frac{0}{-8}
± के धन में होने पर अब समीकरण x=\frac{-8±8}{-8} को हल करें. -8 में 8 को जोड़ें.
x=0
-8 को 0 से विभाजित करें.
x=-\frac{16}{-8}
± के ऋण में होने पर अब समीकरण x=\frac{-8±8}{-8} को हल करें. -8 में से 8 को घटाएं.
x=2
-8 को -16 से विभाजित करें.
x=0 x=2
अब समीकरण का समाधान हो गया है.
8x-4x^{2}=0
दोनों ओर से 4x^{2} घटाएँ.
-4x^{2}+8x=0
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
\frac{-4x^{2}+8x}{-4}=\frac{0}{-4}
दोनों ओर -4 से विभाजन करें.
x^{2}+\frac{8}{-4}x=\frac{0}{-4}
-4 से विभाजित करना -4 से गुणा करने को पूर्ववत् करता है.
x^{2}-2x=\frac{0}{-4}
-4 को 8 से विभाजित करें.
x^{2}-2x=0
-4 को 0 से विभाजित करें.
x^{2}-2x+1=1
-1 प्राप्त करने के लिए x पद के गुणांक -2 को 2 से भाग दें. फिर समीकरण के दोनों ओर -1 का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
\left(x-1\right)^{2}=1
गुणक x^{2}-2x+1. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x-1\right)^{2}}=\sqrt{1}
समीकरण के दोनों ओर का वर्गमूल लें.
x-1=1 x-1=-1
सरल बनाएं.
x=2 x=0
समीकरण के दोनों ओर 1 जोड़ें.