b के लिए हल करें
b=2\sqrt{105}\approx 20.493901532
b=-2\sqrt{105}\approx -20.493901532
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
64+b^{2}=22^{2}
2 की घात की 8 से गणना करें और 64 प्राप्त करें.
64+b^{2}=484
2 की घात की 22 से गणना करें और 484 प्राप्त करें.
b^{2}=484-64
दोनों ओर से 64 घटाएँ.
b^{2}=420
420 प्राप्त करने के लिए 64 में से 484 घटाएं.
b=2\sqrt{105} b=-2\sqrt{105}
समीकरण के दोनों ओर का वर्गमूल लें.
64+b^{2}=22^{2}
2 की घात की 8 से गणना करें और 64 प्राप्त करें.
64+b^{2}=484
2 की घात की 22 से गणना करें और 484 प्राप्त करें.
64+b^{2}-484=0
दोनों ओर से 484 घटाएँ.
-420+b^{2}=0
-420 प्राप्त करने के लिए 484 में से 64 घटाएं.
b^{2}-420=0
इस तरह के द्विघात समीकरण, x^{2} पद वाले लेकिन x पद वाले नहीं, को अभी भी द्विघात सूत्र का उपयोग करके हल किया जा सकता है, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, एक बार इऩ्हें मानक रूप में रखने के बाद: ax^{2}+bx+c=0.
b=\frac{0±\sqrt{0^{2}-4\left(-420\right)}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए 0 और द्विघात सूत्र में c के लिए -420, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\left(-420\right)}}{2}
वर्गमूल 0.
b=\frac{0±\sqrt{1680}}{2}
-4 को -420 बार गुणा करें.
b=\frac{0±4\sqrt{105}}{2}
1680 का वर्गमूल लें.
b=2\sqrt{105}
± के धन में होने पर अब समीकरण b=\frac{0±4\sqrt{105}}{2} को हल करें.
b=-2\sqrt{105}
± के ऋण में होने पर अब समीकरण b=\frac{0±4\sqrt{105}}{2} को हल करें.
b=2\sqrt{105} b=-2\sqrt{105}
अब समीकरण का समाधान हो गया है.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}