मुख्य सामग्री पर जाएं
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

3x^{2}-x-2=0
दोनों ओर 2 से विभाजन करें.
a+b=-1 ab=3\left(-2\right)=-6
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर 3x^{2}+ax+bx-2 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,-6 2,-3
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b ऋणात्मक है, इसलिए ऋणात्मक संख्या में धनात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -6 देते हैं.
1-6=-5 2-3=-1
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-3 b=2
हल वह जोड़ी है जो -1 योग देती है.
\left(3x^{2}-3x\right)+\left(2x-2\right)
3x^{2}-x-2 को \left(3x^{2}-3x\right)+\left(2x-2\right) के रूप में फिर से लिखें.
3x\left(x-1\right)+2\left(x-1\right)
पहले समूह में 3x के और दूसरे समूह में 2 को गुणनखंड बनाएँ.
\left(x-1\right)\left(3x+2\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-1 के गुणनखंड बनाएँ.
x=1 x=-\frac{2}{3}
समीकरण समाधानों को ढूँढने के लिए, x-1=0 और 3x+2=0 को हल करें.
6x^{2}-2x-4=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 6\left(-4\right)}}{2\times 6}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 6, b के लिए -2 और द्विघात सूत्र में c के लिए -4, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 6\left(-4\right)}}{2\times 6}
वर्गमूल -2.
x=\frac{-\left(-2\right)±\sqrt{4-24\left(-4\right)}}{2\times 6}
-4 को 6 बार गुणा करें.
x=\frac{-\left(-2\right)±\sqrt{4+96}}{2\times 6}
-24 को -4 बार गुणा करें.
x=\frac{-\left(-2\right)±\sqrt{100}}{2\times 6}
4 में 96 को जोड़ें.
x=\frac{-\left(-2\right)±10}{2\times 6}
100 का वर्गमूल लें.
x=\frac{2±10}{2\times 6}
-2 का विपरीत 2 है.
x=\frac{2±10}{12}
2 को 6 बार गुणा करें.
x=\frac{12}{12}
± के धन में होने पर अब समीकरण x=\frac{2±10}{12} को हल करें. 2 में 10 को जोड़ें.
x=1
12 को 12 से विभाजित करें.
x=-\frac{8}{12}
± के ऋण में होने पर अब समीकरण x=\frac{2±10}{12} को हल करें. 2 में से 10 को घटाएं.
x=-\frac{2}{3}
4 को निकालकर और रद्द करके भिन्न \frac{-8}{12} को न्यूनतम पदों तक कम करें.
x=1 x=-\frac{2}{3}
अब समीकरण का समाधान हो गया है.
6x^{2}-2x-4=0
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
6x^{2}-2x-4-\left(-4\right)=-\left(-4\right)
समीकरण के दोनों ओर 4 जोड़ें.
6x^{2}-2x=-\left(-4\right)
-4 को इसी से घटाने से 0 मिलता है.
6x^{2}-2x=4
0 में से -4 को घटाएं.
\frac{6x^{2}-2x}{6}=\frac{4}{6}
दोनों ओर 6 से विभाजन करें.
x^{2}+\left(-\frac{2}{6}\right)x=\frac{4}{6}
6 से विभाजित करना 6 से गुणा करने को पूर्ववत् करता है.
x^{2}-\frac{1}{3}x=\frac{4}{6}
2 को निकालकर और रद्द करके भिन्न \frac{-2}{6} को न्यूनतम पदों तक कम करें.
x^{2}-\frac{1}{3}x=\frac{2}{3}
2 को निकालकर और रद्द करके भिन्न \frac{4}{6} को न्यूनतम पदों तक कम करें.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{6}\right)^{2}
-\frac{1}{6} प्राप्त करने के लिए x पद के गुणांक -\frac{1}{3} को 2 से भाग दें. फिर समीकरण के दोनों ओर -\frac{1}{6} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
भिन्न के अंश और हर दोनों का वर्गमूल करके -\frac{1}{6} का वर्ग करें.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
सामान्य हरों का पता लगाकर और अंशों को जोड़कर \frac{2}{3} में \frac{1}{36} जोड़ें. फिर यदि संभव हो तो न्यूनतम पद के भिन्न को कम करें.
\left(x-\frac{1}{6}\right)^{2}=\frac{25}{36}
गुणक x^{2}-\frac{1}{3}x+\frac{1}{36}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
समीकरण के दोनों ओर का वर्गमूल लें.
x-\frac{1}{6}=\frac{5}{6} x-\frac{1}{6}=-\frac{5}{6}
सरल बनाएं.
x=1 x=-\frac{2}{3}
समीकरण के दोनों ओर \frac{1}{6} जोड़ें.