मुख्य सामग्री पर जाएं
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

6x^{2}-1=-x
दोनों ओर से 1 घटाएँ.
6x^{2}-1+x=0
दोनों ओर x जोड़ें.
6x^{2}+x-1=0
बहुपद को मानक रूप में रखने के लिए इसे पुनर्व्यवस्थित करें. टर्म को उच्चतम से निम्नतम घात के क्रम में रखें.
a+b=1 ab=6\left(-1\right)=-6
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर 6x^{2}+ax+bx-1 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,6 -2,3
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b धनात्मक है, धनात्मक संख्या में ऋणात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -6 देते हैं.
-1+6=5 -2+3=1
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-2 b=3
हल वह जोड़ी है जो 1 योग देती है.
\left(6x^{2}-2x\right)+\left(3x-1\right)
6x^{2}+x-1 को \left(6x^{2}-2x\right)+\left(3x-1\right) के रूप में फिर से लिखें.
2x\left(3x-1\right)+3x-1
6x^{2}-2x में 2x को गुणनखंड बनाएँ.
\left(3x-1\right)\left(2x+1\right)
विभाजन के गुण का उपयोग करके सामान्य पद 3x-1 के गुणनखंड बनाएँ.
x=\frac{1}{3} x=-\frac{1}{2}
समीकरण समाधानों को ढूँढने के लिए, 3x-1=0 और 2x+1=0 को हल करें.
6x^{2}-1=-x
दोनों ओर से 1 घटाएँ.
6x^{2}-1+x=0
दोनों ओर x जोड़ें.
6x^{2}+x-1=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-1±\sqrt{1^{2}-4\times 6\left(-1\right)}}{2\times 6}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 6, b के लिए 1 और द्विघात सूत्र में c के लिए -1, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 6\left(-1\right)}}{2\times 6}
वर्गमूल 1.
x=\frac{-1±\sqrt{1-24\left(-1\right)}}{2\times 6}
-4 को 6 बार गुणा करें.
x=\frac{-1±\sqrt{1+24}}{2\times 6}
-24 को -1 बार गुणा करें.
x=\frac{-1±\sqrt{25}}{2\times 6}
1 में 24 को जोड़ें.
x=\frac{-1±5}{2\times 6}
25 का वर्गमूल लें.
x=\frac{-1±5}{12}
2 को 6 बार गुणा करें.
x=\frac{4}{12}
± के धन में होने पर अब समीकरण x=\frac{-1±5}{12} को हल करें. -1 में 5 को जोड़ें.
x=\frac{1}{3}
4 को निकालकर और रद्द करके भिन्न \frac{4}{12} को न्यूनतम पदों तक कम करें.
x=-\frac{6}{12}
± के ऋण में होने पर अब समीकरण x=\frac{-1±5}{12} को हल करें. -1 में से 5 को घटाएं.
x=-\frac{1}{2}
6 को निकालकर और रद्द करके भिन्न \frac{-6}{12} को न्यूनतम पदों तक कम करें.
x=\frac{1}{3} x=-\frac{1}{2}
अब समीकरण का समाधान हो गया है.
6x^{2}+x=1
दोनों ओर x जोड़ें.
\frac{6x^{2}+x}{6}=\frac{1}{6}
दोनों ओर 6 से विभाजन करें.
x^{2}+\frac{1}{6}x=\frac{1}{6}
6 से विभाजित करना 6 से गुणा करने को पूर्ववत् करता है.
x^{2}+\frac{1}{6}x+\left(\frac{1}{12}\right)^{2}=\frac{1}{6}+\left(\frac{1}{12}\right)^{2}
\frac{1}{12} प्राप्त करने के लिए x पद के गुणांक \frac{1}{6} को 2 से भाग दें. फिर समीकरण के दोनों ओर \frac{1}{12} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{1}{6}+\frac{1}{144}
भिन्न के अंश और हर दोनों का वर्गमूल करके \frac{1}{12} का वर्ग करें.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{25}{144}
सामान्य हरों का पता लगाकर और अंशों को जोड़कर \frac{1}{6} में \frac{1}{144} जोड़ें. फिर यदि संभव हो तो न्यूनतम पद के भिन्न को कम करें.
\left(x+\frac{1}{12}\right)^{2}=\frac{25}{144}
गुणक x^{2}+\frac{1}{6}x+\frac{1}{144}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x+\frac{1}{12}\right)^{2}}=\sqrt{\frac{25}{144}}
समीकरण के दोनों ओर का वर्गमूल लें.
x+\frac{1}{12}=\frac{5}{12} x+\frac{1}{12}=-\frac{5}{12}
सरल बनाएं.
x=\frac{1}{3} x=-\frac{1}{2}
समीकरण के दोनों ओर से \frac{1}{12} घटाएं.