गुणनखंड निकालें
\left(3x-2\right)\left(2x+1\right)
मूल्यांकन करें
\left(3x-2\right)\left(2x+1\right)
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
a+b=-1 ab=6\left(-2\right)=-12
समूहीकरण द्वारा व्यंजक को फ़ैक्टर करें. सबसे पहले, व्यंजक को 6x^{2}+ax+bx-2 के रूप में फिर से लिखा जाना आवश्यक है. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,-12 2,-6 3,-4
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b ऋणात्मक है, इसलिए ऋणात्मक संख्या में धनात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -12 देते हैं.
1-12=-11 2-6=-4 3-4=-1
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-4 b=3
हल वह जोड़ी है जो -1 योग देती है.
\left(6x^{2}-4x\right)+\left(3x-2\right)
6x^{2}-x-2 को \left(6x^{2}-4x\right)+\left(3x-2\right) के रूप में फिर से लिखें.
2x\left(3x-2\right)+3x-2
6x^{2}-4x में 2x को गुणनखंड बनाएँ.
\left(3x-2\right)\left(2x+1\right)
विभाजन के गुण का उपयोग करके सामान्य पद 3x-2 के गुणनखंड बनाएँ.
6x^{2}-x-2=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-2\right)}}{2\times 6}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-2\right)}}{2\times 6}
-4 को 6 बार गुणा करें.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 6}
-24 को -2 बार गुणा करें.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 6}
1 में 48 को जोड़ें.
x=\frac{-\left(-1\right)±7}{2\times 6}
49 का वर्गमूल लें.
x=\frac{1±7}{2\times 6}
-1 का विपरीत 1 है.
x=\frac{1±7}{12}
2 को 6 बार गुणा करें.
x=\frac{8}{12}
± के धन में होने पर अब समीकरण x=\frac{1±7}{12} को हल करें. 1 में 7 को जोड़ें.
x=\frac{2}{3}
4 को निकालकर और रद्द करके भिन्न \frac{8}{12} को न्यूनतम पदों तक कम करें.
x=-\frac{6}{12}
± के ऋण में होने पर अब समीकरण x=\frac{1±7}{12} को हल करें. 1 में से 7 को घटाएं.
x=-\frac{1}{2}
6 को निकालकर और रद्द करके भिन्न \frac{-6}{12} को न्यूनतम पदों तक कम करें.
6x^{2}-x-2=6\left(x-\frac{2}{3}\right)\left(x-\left(-\frac{1}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए \frac{2}{3} और x_{2} के लिए -\frac{1}{2} स्थानापन्न है.
6x^{2}-x-2=6\left(x-\frac{2}{3}\right)\left(x+\frac{1}{2}\right)
प्रपत्र के सभी व्यंजकों को p-\left(-q\right) से p+q तक सरलीकृत करें.
6x^{2}-x-2=6\times \frac{3x-2}{3}\left(x+\frac{1}{2}\right)
उभयनिष्ठ हर ढूँढकर और अंशों को घटाकर x में से \frac{2}{3} को घटाएँ. फिर यदि संभव हो तो भिन्न को न्यूनतम पद तक कम करें.
6x^{2}-x-2=6\times \frac{3x-2}{3}\times \frac{2x+1}{2}
सामान्य हरों का पता लगाकर और अंशों को जोड़कर \frac{1}{2} में x जोड़ें. फिर यदि संभव हो तो न्यूनतम पद के भिन्न को कम करें.
6x^{2}-x-2=6\times \frac{\left(3x-2\right)\left(2x+1\right)}{3\times 2}
अंश के बार अंश से और हर के बराबर हर से गुणा करके \frac{3x-2}{3} का \frac{2x+1}{2} बार गुणा करें. फिर यदि संभव हो तो भिन्न को न्यूनतम पदों तक कम करें.
6x^{2}-x-2=6\times \frac{\left(3x-2\right)\left(2x+1\right)}{6}
3 को 2 बार गुणा करें.
6x^{2}-x-2=\left(3x-2\right)\left(2x+1\right)
6 और 6 में महत्तम समापवर्तक 6 को रद्द कर दें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}