मुख्य सामग्री पर जाएं
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

x^{2}-2x-3=0
दोनों ओर 5 से विभाजन करें.
a+b=-2 ab=1\left(-3\right)=-3
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर x^{2}+ax+bx-3 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
a=-3 b=1
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b ऋणात्मक है, इसलिए ऋणात्मक संख्या में धनात्मक से अधिक निरपेक्ष मान है. केवल ऐसी जोड़ी सिस्टम समाधान है.
\left(x^{2}-3x\right)+\left(x-3\right)
x^{2}-2x-3 को \left(x^{2}-3x\right)+\left(x-3\right) के रूप में फिर से लिखें.
x\left(x-3\right)+x-3
x^{2}-3x में x को गुणनखंड बनाएँ.
\left(x-3\right)\left(x+1\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-3 के गुणनखंड बनाएँ.
x=3 x=-1
समीकरण समाधानों को ढूँढने के लिए, x-3=0 और x+1=0 को हल करें.
5x^{2}-10x-15=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 5\left(-15\right)}}{2\times 5}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 5, b के लिए -10 और द्विघात सूत्र में c के लिए -15, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 5\left(-15\right)}}{2\times 5}
वर्गमूल -10.
x=\frac{-\left(-10\right)±\sqrt{100-20\left(-15\right)}}{2\times 5}
-4 को 5 बार गुणा करें.
x=\frac{-\left(-10\right)±\sqrt{100+300}}{2\times 5}
-20 को -15 बार गुणा करें.
x=\frac{-\left(-10\right)±\sqrt{400}}{2\times 5}
100 में 300 को जोड़ें.
x=\frac{-\left(-10\right)±20}{2\times 5}
400 का वर्गमूल लें.
x=\frac{10±20}{2\times 5}
-10 का विपरीत 10 है.
x=\frac{10±20}{10}
2 को 5 बार गुणा करें.
x=\frac{30}{10}
± के धन में होने पर अब समीकरण x=\frac{10±20}{10} को हल करें. 10 में 20 को जोड़ें.
x=3
10 को 30 से विभाजित करें.
x=-\frac{10}{10}
± के ऋण में होने पर अब समीकरण x=\frac{10±20}{10} को हल करें. 10 में से 20 को घटाएं.
x=-1
10 को -10 से विभाजित करें.
x=3 x=-1
अब समीकरण का समाधान हो गया है.
5x^{2}-10x-15=0
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
5x^{2}-10x-15-\left(-15\right)=-\left(-15\right)
समीकरण के दोनों ओर 15 जोड़ें.
5x^{2}-10x=-\left(-15\right)
-15 को इसी से घटाने से 0 मिलता है.
5x^{2}-10x=15
0 में से -15 को घटाएं.
\frac{5x^{2}-10x}{5}=\frac{15}{5}
दोनों ओर 5 से विभाजन करें.
x^{2}+\left(-\frac{10}{5}\right)x=\frac{15}{5}
5 से विभाजित करना 5 से गुणा करने को पूर्ववत् करता है.
x^{2}-2x=\frac{15}{5}
5 को -10 से विभाजित करें.
x^{2}-2x=3
5 को 15 से विभाजित करें.
x^{2}-2x+1=3+1
-1 प्राप्त करने के लिए x पद के गुणांक -2 को 2 से भाग दें. फिर समीकरण के दोनों ओर -1 का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}-2x+1=4
3 में 1 को जोड़ें.
\left(x-1\right)^{2}=4
गुणक x^{2}-2x+1. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
समीकरण के दोनों ओर का वर्गमूल लें.
x-1=2 x-1=-2
सरल बनाएं.
x=3 x=-1
समीकरण के दोनों ओर 1 जोड़ें.