गुणनखंड निकालें
x\left(49x-24\right)
मूल्यांकन करें
x\left(49x-24\right)
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
x\left(49x-24\right)
x के गुणनखंड बनाएँ.
49x^{2}-24x=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}}}{2\times 49}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-24\right)±24}{2\times 49}
\left(-24\right)^{2} का वर्गमूल लें.
x=\frac{24±24}{2\times 49}
-24 का विपरीत 24 है.
x=\frac{24±24}{98}
2 को 49 बार गुणा करें.
x=\frac{48}{98}
± के धन में होने पर अब समीकरण x=\frac{24±24}{98} को हल करें. 24 में 24 को जोड़ें.
x=\frac{24}{49}
2 को निकालकर और रद्द करके भिन्न \frac{48}{98} को न्यूनतम पदों तक कम करें.
x=\frac{0}{98}
± के ऋण में होने पर अब समीकरण x=\frac{24±24}{98} को हल करें. 24 में से 24 को घटाएं.
x=0
98 को 0 से विभाजित करें.
49x^{2}-24x=49\left(x-\frac{24}{49}\right)x
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए \frac{24}{49} और x_{2} के लिए 0 स्थानापन्न है.
49x^{2}-24x=49\times \frac{49x-24}{49}x
उभयनिष्ठ हर ढूँढकर और अंशों को घटाकर x में से \frac{24}{49} को घटाएँ. फिर यदि संभव हो तो भिन्न को न्यूनतम पद तक कम करें.
49x^{2}-24x=\left(49x-24\right)x
49 और 49 में महत्तम समापवर्तक 49 को रद्द कर दें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}