मुख्य सामग्री पर जाएं
x के लिए हल करें (जटिल समाधान)
Tick mark Image
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

4x^{3}+2x^{2}+x+7-49=0
दोनों ओर से 49 घटाएँ.
4x^{3}+2x^{2}+x-42=0
-42 प्राप्त करने के लिए 49 में से 7 घटाएं.
±\frac{21}{2},±21,±42,±\frac{21}{4},±\frac{7}{2},±7,±14,±\frac{7}{4},±\frac{3}{2},±3,±6,±\frac{3}{4},±\frac{1}{2},±1,±2,±\frac{1}{4}
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द -42 को विभाजित करती है और q अग्रणी गुणांक 4 को विभाजित करती है. \frac{p}{q} सभी उंमीदवारों की सूची.
x=2
निरपेक्ष मान के द्वारा छोटे से प्रारंभ करके, सभी पूर्णांक मानों को आज़माकर एक जैसे रूट ढूँढें. यदि कोई पूर्णांक जड़ें नहीं मिलती हैं, तो भिन्नों को आज़माएँ.
4x^{2}+10x+21=0
फ़ैक्टर प्रमेय के द्वारा, x-k प्रत्येक रूट k के लिए बहुपद का एक फ़ैक्टर है. 4x^{2}+10x+21 प्राप्त करने के लिए 4x^{3}+2x^{2}+x-42 को x-2 से विभाजित करें. समीकरण को हल करें जहाँ परिणाम 0 के बराबर हो.
x=\frac{-10±\sqrt{10^{2}-4\times 4\times 21}}{2\times 4}
प्रपत्र ax^{2}+bx+c=0 के सभी समीकरणों को \frac{-b±\sqrt{b^{2}-4ac}}{2a} द्विघात सूत्र का उपयोग करके हल किया जा सकता है. द्विघात सूत्र में a के लिए 4, b के लिए 10, और c के लिए 21 प्रतिस्थापित करें.
x=\frac{-10±\sqrt{-236}}{8}
परिकलन करें.
x=\frac{-\sqrt{59}i-5}{4} x=\frac{-5+\sqrt{59}i}{4}
समीकरण 4x^{2}+10x+21=0 को हल करें जब ± धन है और जब ± ऋण है.
x=2 x=\frac{-\sqrt{59}i-5}{4} x=\frac{-5+\sqrt{59}i}{4}
सभी मिले हुए समाधानों की सूची.
4x^{3}+2x^{2}+x+7-49=0
दोनों ओर से 49 घटाएँ.
4x^{3}+2x^{2}+x-42=0
-42 प्राप्त करने के लिए 49 में से 7 घटाएं.
±\frac{21}{2},±21,±42,±\frac{21}{4},±\frac{7}{2},±7,±14,±\frac{7}{4},±\frac{3}{2},±3,±6,±\frac{3}{4},±\frac{1}{2},±1,±2,±\frac{1}{4}
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द -42 को विभाजित करती है और q अग्रणी गुणांक 4 को विभाजित करती है. \frac{p}{q} सभी उंमीदवारों की सूची.
x=2
निरपेक्ष मान के द्वारा छोटे से प्रारंभ करके, सभी पूर्णांक मानों को आज़माकर एक जैसे रूट ढूँढें. यदि कोई पूर्णांक जड़ें नहीं मिलती हैं, तो भिन्नों को आज़माएँ.
4x^{2}+10x+21=0
फ़ैक्टर प्रमेय के द्वारा, x-k प्रत्येक रूट k के लिए बहुपद का एक फ़ैक्टर है. 4x^{2}+10x+21 प्राप्त करने के लिए 4x^{3}+2x^{2}+x-42 को x-2 से विभाजित करें. समीकरण को हल करें जहाँ परिणाम 0 के बराबर हो.
x=\frac{-10±\sqrt{10^{2}-4\times 4\times 21}}{2\times 4}
प्रपत्र ax^{2}+bx+c=0 के सभी समीकरणों को \frac{-b±\sqrt{b^{2}-4ac}}{2a} द्विघात सूत्र का उपयोग करके हल किया जा सकता है. द्विघात सूत्र में a के लिए 4, b के लिए 10, और c के लिए 21 प्रतिस्थापित करें.
x=\frac{-10±\sqrt{-236}}{8}
परिकलन करें.
x\in \emptyset
चूँकि वास्तविक फ़ील्ड में ऋणात्मक संख्या का वर्गमूल निर्धारित नहीं है, इसलिए कोई हल नहीं है.
x=2
सभी मिले हुए समाधानों की सूची.