मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

2\left(2x^{2}+3x\right)
2 के गुणनखंड बनाएँ.
x\left(2x+3\right)
2x^{2}+3x पर विचार करें. x के गुणनखंड बनाएँ.
2x\left(2x+3\right)
पूर्ण फ़ैक्टर व्यंजक को फिर से लिखें.
4x^{2}+6x=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-6±\sqrt{6^{2}}}{2\times 4}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-6±6}{2\times 4}
6^{2} का वर्गमूल लें.
x=\frac{-6±6}{8}
2 को 4 बार गुणा करें.
x=\frac{0}{8}
± के धन में होने पर अब समीकरण x=\frac{-6±6}{8} को हल करें. -6 में 6 को जोड़ें.
x=0
8 को 0 से विभाजित करें.
x=-\frac{12}{8}
± के ऋण में होने पर अब समीकरण x=\frac{-6±6}{8} को हल करें. -6 में से 6 को घटाएं.
x=-\frac{3}{2}
4 को निकालकर और रद्द करके भिन्न \frac{-12}{8} को न्यूनतम पदों तक कम करें.
4x^{2}+6x=4x\left(x-\left(-\frac{3}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए 0 और x_{2} के लिए -\frac{3}{2} स्थानापन्न है.
4x^{2}+6x=4x\left(x+\frac{3}{2}\right)
प्रपत्र के सभी व्यंजकों को p-\left(-q\right) से p+q तक सरलीकृत करें.
4x^{2}+6x=4x\times \frac{2x+3}{2}
सामान्य हरों का पता लगाकर और अंशों को जोड़कर \frac{3}{2} में x जोड़ें. फिर यदि संभव हो तो न्यूनतम पद के भिन्न को कम करें.
4x^{2}+6x=2x\left(2x+3\right)
4 और 2 में महत्तम समापवर्तक 2 को रद्द कर दें.