मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image

वेब खोज से समान सवाल

साझा करें

\left(4x-8y\right)a^{2}+\left(-12bx+24by\right)a+9b^{2}x-18b^{2}y
वेरिएबल a के बजाय 4a^{2}x-12abx+9b^{2}x-8a^{2}y+24aby-18b^{2}y का बहुपद के रूप में विचार करें.
\left(2a-3b\right)\left(2ax-3bx+6by-4ay\right)
प्रपत्र ka^{m}+n के लिए एक फ़ैक्टर खोजें, जहाँ ka^{m} एकपद को उच्चतम पावर \left(4x-8y\right)a^{2} से और n को निरंतर फ़ैक्टर 9xb^{2}-18yb^{2} से विभाजित करता है. ऐसा एक फ़ैक्टर 2a-3b है. बहुपद को इस फ़ैक्टर से विभाजित करके भाज्य करें.
x\left(2a-3b\right)-2y\left(2a-3b\right)
2ax-3bx+6by-4ay पर विचार करें. 2ax-3bx+6by-4ay=\left(2ax-3bx\right)+\left(6by-4ay\right) समूहीकरण करें और पहले में x और दूसरे समूह में -2y को गुणनखंड बनाएँ.
\left(2a-3b\right)\left(x-2y\right)
विभाजन के गुण का उपयोग करके सामान्य पद 2a-3b के गुणनखंड बनाएँ.
\left(x-2y\right)\left(2a-3b\right)^{2}
पूर्ण फ़ैक्टर व्यंजक को फिर से लिखें.