मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

a+b=-3 ab=4\left(-7\right)=-28
समूहीकरण द्वारा व्यंजक को फ़ैक्टर करें. सबसे पहले, व्यंजक को 4x^{2}+ax+bx-7 के रूप में फिर से लिखा जाना आवश्यक है. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,-28 2,-14 4,-7
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b ऋणात्मक है, इसलिए ऋणात्मक संख्या में धनात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -28 देते हैं.
1-28=-27 2-14=-12 4-7=-3
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-7 b=4
हल वह जोड़ी है जो -3 योग देती है.
\left(4x^{2}-7x\right)+\left(4x-7\right)
4x^{2}-3x-7 को \left(4x^{2}-7x\right)+\left(4x-7\right) के रूप में फिर से लिखें.
x\left(4x-7\right)+4x-7
4x^{2}-7x में x को गुणनखंड बनाएँ.
\left(4x-7\right)\left(x+1\right)
विभाजन के गुण का उपयोग करके सामान्य पद 4x-7 के गुणनखंड बनाएँ.
4x^{2}-3x-7=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 4\left(-7\right)}}{2\times 4}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 4\left(-7\right)}}{2\times 4}
वर्गमूल -3.
x=\frac{-\left(-3\right)±\sqrt{9-16\left(-7\right)}}{2\times 4}
-4 को 4 बार गुणा करें.
x=\frac{-\left(-3\right)±\sqrt{9+112}}{2\times 4}
-16 को -7 बार गुणा करें.
x=\frac{-\left(-3\right)±\sqrt{121}}{2\times 4}
9 में 112 को जोड़ें.
x=\frac{-\left(-3\right)±11}{2\times 4}
121 का वर्गमूल लें.
x=\frac{3±11}{2\times 4}
-3 का विपरीत 3 है.
x=\frac{3±11}{8}
2 को 4 बार गुणा करें.
x=\frac{14}{8}
± के धन में होने पर अब समीकरण x=\frac{3±11}{8} को हल करें. 3 में 11 को जोड़ें.
x=\frac{7}{4}
2 को निकालकर और रद्द करके भिन्न \frac{14}{8} को न्यूनतम पदों तक कम करें.
x=-\frac{8}{8}
± के ऋण में होने पर अब समीकरण x=\frac{3±11}{8} को हल करें. 3 में से 11 को घटाएं.
x=-1
8 को -8 से विभाजित करें.
4x^{2}-3x-7=4\left(x-\frac{7}{4}\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए \frac{7}{4} और x_{2} के लिए -1 स्थानापन्न है.
4x^{2}-3x-7=4\left(x-\frac{7}{4}\right)\left(x+1\right)
प्रपत्र के सभी व्यंजकों को p-\left(-q\right) से p+q तक सरलीकृत करें.
4x^{2}-3x-7=4\times \frac{4x-7}{4}\left(x+1\right)
उभयनिष्ठ हर ढूँढकर और अंशों को घटाकर x में से \frac{7}{4} को घटाएँ. फिर यदि संभव हो तो भिन्न को न्यूनतम पद तक कम करें.
4x^{2}-3x-7=\left(4x-7\right)\left(x+1\right)
4 और 4 में महत्तम समापवर्तक 4 को रद्द कर दें.