मुख्य सामग्री पर जाएं
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

36=x^{2}-5x
x-5 से x गुणा करने हेतु बंटन के गुण का उपयोग करें.
x^{2}-5x=36
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
x^{2}-5x-36=0
दोनों ओर से 36 घटाएँ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-36\right)}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए -5 और द्विघात सूत्र में c के लिए -36, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-36\right)}}{2}
वर्गमूल -5.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2}
-4 को -36 बार गुणा करें.
x=\frac{-\left(-5\right)±\sqrt{169}}{2}
25 में 144 को जोड़ें.
x=\frac{-\left(-5\right)±13}{2}
169 का वर्गमूल लें.
x=\frac{5±13}{2}
-5 का विपरीत 5 है.
x=\frac{18}{2}
± के धन में होने पर अब समीकरण x=\frac{5±13}{2} को हल करें. 5 में 13 को जोड़ें.
x=9
2 को 18 से विभाजित करें.
x=-\frac{8}{2}
± के ऋण में होने पर अब समीकरण x=\frac{5±13}{2} को हल करें. 5 में से 13 को घटाएं.
x=-4
2 को -8 से विभाजित करें.
x=9 x=-4
अब समीकरण का समाधान हो गया है.
36=x^{2}-5x
x-5 से x गुणा करने हेतु बंटन के गुण का उपयोग करें.
x^{2}-5x=36
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=36+\left(-\frac{5}{2}\right)^{2}
-\frac{5}{2} प्राप्त करने के लिए x पद के गुणांक -5 को 2 से भाग दें. फिर समीकरण के दोनों ओर -\frac{5}{2} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}-5x+\frac{25}{4}=36+\frac{25}{4}
भिन्न के अंश और हर दोनों का वर्गमूल करके -\frac{5}{2} का वर्ग करें.
x^{2}-5x+\frac{25}{4}=\frac{169}{4}
36 में \frac{25}{4} को जोड़ें.
\left(x-\frac{5}{2}\right)^{2}=\frac{169}{4}
गुणक x^{2}-5x+\frac{25}{4}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
समीकरण के दोनों ओर का वर्गमूल लें.
x-\frac{5}{2}=\frac{13}{2} x-\frac{5}{2}=-\frac{13}{2}
सरल बनाएं.
x=9 x=-4
समीकरण के दोनों ओर \frac{5}{2} जोड़ें.