मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

3x^{2}-2x-4=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-4\right)}}{2\times 3}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3\left(-4\right)}}{2\times 3}
वर्गमूल -2.
x=\frac{-\left(-2\right)±\sqrt{4-12\left(-4\right)}}{2\times 3}
-4 को 3 बार गुणा करें.
x=\frac{-\left(-2\right)±\sqrt{4+48}}{2\times 3}
-12 को -4 बार गुणा करें.
x=\frac{-\left(-2\right)±\sqrt{52}}{2\times 3}
4 में 48 को जोड़ें.
x=\frac{-\left(-2\right)±2\sqrt{13}}{2\times 3}
52 का वर्गमूल लें.
x=\frac{2±2\sqrt{13}}{2\times 3}
-2 का विपरीत 2 है.
x=\frac{2±2\sqrt{13}}{6}
2 को 3 बार गुणा करें.
x=\frac{2\sqrt{13}+2}{6}
± के धन में होने पर अब समीकरण x=\frac{2±2\sqrt{13}}{6} को हल करें. 2 में 2\sqrt{13} को जोड़ें.
x=\frac{\sqrt{13}+1}{3}
6 को 2+2\sqrt{13} से विभाजित करें.
x=\frac{2-2\sqrt{13}}{6}
± के ऋण में होने पर अब समीकरण x=\frac{2±2\sqrt{13}}{6} को हल करें. 2 में से 2\sqrt{13} को घटाएं.
x=\frac{1-\sqrt{13}}{3}
6 को 2-2\sqrt{13} से विभाजित करें.
3x^{2}-2x-4=3\left(x-\frac{\sqrt{13}+1}{3}\right)\left(x-\frac{1-\sqrt{13}}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए \frac{1+\sqrt{13}}{3} और x_{2} के लिए \frac{1-\sqrt{13}}{3} स्थानापन्न है.