मुख्य सामग्री पर जाएं
x के लिए हल करें (जटिल समाधान)
Tick mark Image
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

3x^{2}x-1+x\left(-2\right)=0
चर x, 0 के बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों को x से गुणा करें.
3x^{3}-1+x\left(-2\right)=0
समान आधार की घातों को गुणा करने के लिए उनके घातांकों को जोड़ें. 3 प्राप्त करने के लिए 2 और 1 को जोड़ें.
3x^{3}-2x-1=0
समीकरण को मानक रूप में रखने के लिए इसे पुनर्व्यवस्थित करें. पद को उच्चतम से निम्नतम घात के क्रम में रखें.
±\frac{1}{3},±1
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द -1 को विभाजित करती है और q अग्रणी गुणांक 3 को विभाजित करती है. \frac{p}{q} सभी उंमीदवारों की सूची.
x=1
निरपेक्ष मान के द्वारा छोटे से प्रारंभ करके, सभी पूर्णांक मानों को आज़माकर एक जैसे रूट ढूँढें. यदि कोई पूर्णांक जड़ें नहीं मिलती हैं, तो भिन्नों को आज़माएँ.
3x^{2}+3x+1=0
फ़ैक्टर प्रमेय के द्वारा, x-k प्रत्येक रूट k के लिए बहुपद का एक फ़ैक्टर है. 3x^{2}+3x+1 प्राप्त करने के लिए 3x^{3}-2x-1 को x-1 से विभाजित करें. समीकरण को हल करें जहाँ परिणाम 0 के बराबर हो.
x=\frac{-3±\sqrt{3^{2}-4\times 3\times 1}}{2\times 3}
प्रपत्र ax^{2}+bx+c=0 के सभी समीकरणों को \frac{-b±\sqrt{b^{2}-4ac}}{2a} द्विघात सूत्र का उपयोग करके हल किया जा सकता है. द्विघात सूत्र में a के लिए 3, b के लिए 3, और c के लिए 1 प्रतिस्थापित करें.
x=\frac{-3±\sqrt{-3}}{6}
परिकलन करें.
x=-\frac{\sqrt{3}i}{6}-\frac{1}{2} x=\frac{\sqrt{3}i}{6}-\frac{1}{2}
समीकरण 3x^{2}+3x+1=0 को हल करें जब ± धन है और जब ± ऋण है.
x=1 x=-\frac{\sqrt{3}i}{6}-\frac{1}{2} x=\frac{\sqrt{3}i}{6}-\frac{1}{2}
सभी मिले हुए समाधानों की सूची.
3x^{2}x-1+x\left(-2\right)=0
चर x, 0 के बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों को x से गुणा करें.
3x^{3}-1+x\left(-2\right)=0
समान आधार की घातों को गुणा करने के लिए उनके घातांकों को जोड़ें. 3 प्राप्त करने के लिए 2 और 1 को जोड़ें.
3x^{3}-2x-1=0
समीकरण को मानक रूप में रखने के लिए इसे पुनर्व्यवस्थित करें. पद को उच्चतम से निम्नतम घात के क्रम में रखें.
±\frac{1}{3},±1
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द -1 को विभाजित करती है और q अग्रणी गुणांक 3 को विभाजित करती है. \frac{p}{q} सभी उंमीदवारों की सूची.
x=1
निरपेक्ष मान के द्वारा छोटे से प्रारंभ करके, सभी पूर्णांक मानों को आज़माकर एक जैसे रूट ढूँढें. यदि कोई पूर्णांक जड़ें नहीं मिलती हैं, तो भिन्नों को आज़माएँ.
3x^{2}+3x+1=0
फ़ैक्टर प्रमेय के द्वारा, x-k प्रत्येक रूट k के लिए बहुपद का एक फ़ैक्टर है. 3x^{2}+3x+1 प्राप्त करने के लिए 3x^{3}-2x-1 को x-1 से विभाजित करें. समीकरण को हल करें जहाँ परिणाम 0 के बराबर हो.
x=\frac{-3±\sqrt{3^{2}-4\times 3\times 1}}{2\times 3}
प्रपत्र ax^{2}+bx+c=0 के सभी समीकरणों को \frac{-b±\sqrt{b^{2}-4ac}}{2a} द्विघात सूत्र का उपयोग करके हल किया जा सकता है. द्विघात सूत्र में a के लिए 3, b के लिए 3, और c के लिए 1 प्रतिस्थापित करें.
x=\frac{-3±\sqrt{-3}}{6}
परिकलन करें.
x\in \emptyset
चूँकि वास्तविक फ़ील्ड में ऋणात्मक संख्या का वर्गमूल निर्धारित नहीं है, इसलिए कोई हल नहीं है.
x=1
सभी मिले हुए समाधानों की सूची.