x के लिए हल करें
x=-\frac{2}{3}\approx -0.666666667
x=-2
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
a+b=8 ab=3\times 4=12
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर 3x^{2}+ax+bx+4 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,12 2,6 3,4
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूंकि a+b सकारात्मक है, a और b दोनों सकारात्मक हैं. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद 12 देते हैं.
1+12=13 2+6=8 3+4=7
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=2 b=6
हल वह जोड़ी है जो 8 योग देती है.
\left(3x^{2}+2x\right)+\left(6x+4\right)
3x^{2}+8x+4 को \left(3x^{2}+2x\right)+\left(6x+4\right) के रूप में फिर से लिखें.
x\left(3x+2\right)+2\left(3x+2\right)
पहले समूह में x के और दूसरे समूह में 2 को गुणनखंड बनाएँ.
\left(3x+2\right)\left(x+2\right)
विभाजन के गुण का उपयोग करके सामान्य पद 3x+2 के गुणनखंड बनाएँ.
x=-\frac{2}{3} x=-2
समीकरण समाधानों को ढूँढने के लिए, 3x+2=0 और x+2=0 को हल करें.
3x^{2}+8x+4=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-8±\sqrt{8^{2}-4\times 3\times 4}}{2\times 3}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 3, b के लिए 8 और द्विघात सूत्र में c के लिए 4, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 3\times 4}}{2\times 3}
वर्गमूल 8.
x=\frac{-8±\sqrt{64-12\times 4}}{2\times 3}
-4 को 3 बार गुणा करें.
x=\frac{-8±\sqrt{64-48}}{2\times 3}
-12 को 4 बार गुणा करें.
x=\frac{-8±\sqrt{16}}{2\times 3}
64 में -48 को जोड़ें.
x=\frac{-8±4}{2\times 3}
16 का वर्गमूल लें.
x=\frac{-8±4}{6}
2 को 3 बार गुणा करें.
x=-\frac{4}{6}
± के धन में होने पर अब समीकरण x=\frac{-8±4}{6} को हल करें. -8 में 4 को जोड़ें.
x=-\frac{2}{3}
2 को निकालकर और रद्द करके भिन्न \frac{-4}{6} को न्यूनतम पदों तक कम करें.
x=-\frac{12}{6}
± के ऋण में होने पर अब समीकरण x=\frac{-8±4}{6} को हल करें. -8 में से 4 को घटाएं.
x=-2
6 को -12 से विभाजित करें.
x=-\frac{2}{3} x=-2
अब समीकरण का समाधान हो गया है.
3x^{2}+8x+4=0
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
3x^{2}+8x+4-4=-4
समीकरण के दोनों ओर से 4 घटाएं.
3x^{2}+8x=-4
4 को इसी से घटाने से 0 मिलता है.
\frac{3x^{2}+8x}{3}=-\frac{4}{3}
दोनों ओर 3 से विभाजन करें.
x^{2}+\frac{8}{3}x=-\frac{4}{3}
3 से विभाजित करना 3 से गुणा करने को पूर्ववत् करता है.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=-\frac{4}{3}+\left(\frac{4}{3}\right)^{2}
\frac{4}{3} प्राप्त करने के लिए x पद के गुणांक \frac{8}{3} को 2 से भाग दें. फिर समीकरण के दोनों ओर \frac{4}{3} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}+\frac{8}{3}x+\frac{16}{9}=-\frac{4}{3}+\frac{16}{9}
भिन्न के अंश और हर दोनों का वर्गमूल करके \frac{4}{3} का वर्ग करें.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{4}{9}
सामान्य हरों का पता लगाकर और अंशों को जोड़कर -\frac{4}{3} में \frac{16}{9} जोड़ें. फिर यदि संभव हो तो न्यूनतम पद के भिन्न को कम करें.
\left(x+\frac{4}{3}\right)^{2}=\frac{4}{9}
गुणक x^{2}+\frac{8}{3}x+\frac{16}{9}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
समीकरण के दोनों ओर का वर्गमूल लें.
x+\frac{4}{3}=\frac{2}{3} x+\frac{4}{3}=-\frac{2}{3}
सरल बनाएं.
x=-\frac{2}{3} x=-2
समीकरण के दोनों ओर से \frac{4}{3} घटाएं.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}