मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

a+b=4 ab=3\left(-4\right)=-12
समूहीकरण द्वारा व्यंजक को फ़ैक्टर करें. सबसे पहले, व्यंजक को 3x^{2}+ax+bx-4 के रूप में फिर से लिखा जाना आवश्यक है. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,12 -2,6 -3,4
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b धनात्मक है, धनात्मक संख्या में ऋणात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -12 देते हैं.
-1+12=11 -2+6=4 -3+4=1
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-2 b=6
हल वह जोड़ी है जो 4 योग देती है.
\left(3x^{2}-2x\right)+\left(6x-4\right)
3x^{2}+4x-4 को \left(3x^{2}-2x\right)+\left(6x-4\right) के रूप में फिर से लिखें.
x\left(3x-2\right)+2\left(3x-2\right)
पहले समूह में x के और दूसरे समूह में 2 को गुणनखंड बनाएँ.
\left(3x-2\right)\left(x+2\right)
विभाजन के गुण का उपयोग करके सामान्य पद 3x-2 के गुणनखंड बनाएँ.
3x^{2}+4x-4=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-4±\sqrt{4^{2}-4\times 3\left(-4\right)}}{2\times 3}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-4±\sqrt{16-4\times 3\left(-4\right)}}{2\times 3}
वर्गमूल 4.
x=\frac{-4±\sqrt{16-12\left(-4\right)}}{2\times 3}
-4 को 3 बार गुणा करें.
x=\frac{-4±\sqrt{16+48}}{2\times 3}
-12 को -4 बार गुणा करें.
x=\frac{-4±\sqrt{64}}{2\times 3}
16 में 48 को जोड़ें.
x=\frac{-4±8}{2\times 3}
64 का वर्गमूल लें.
x=\frac{-4±8}{6}
2 को 3 बार गुणा करें.
x=\frac{4}{6}
± के धन में होने पर अब समीकरण x=\frac{-4±8}{6} को हल करें. -4 में 8 को जोड़ें.
x=\frac{2}{3}
2 को निकालकर और रद्द करके भिन्न \frac{4}{6} को न्यूनतम पदों तक कम करें.
x=-\frac{12}{6}
± के ऋण में होने पर अब समीकरण x=\frac{-4±8}{6} को हल करें. -4 में से 8 को घटाएं.
x=-2
6 को -12 से विभाजित करें.
3x^{2}+4x-4=3\left(x-\frac{2}{3}\right)\left(x-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए \frac{2}{3} और x_{2} के लिए -2 स्थानापन्न है.
3x^{2}+4x-4=3\left(x-\frac{2}{3}\right)\left(x+2\right)
प्रपत्र के सभी व्यंजकों को p-\left(-q\right) से p+q तक सरलीकृत करें.
3x^{2}+4x-4=3\times \frac{3x-2}{3}\left(x+2\right)
उभयनिष्ठ हर ढूँढकर और अंशों को घटाकर x में से \frac{2}{3} को घटाएँ. फिर यदि संभव हो तो भिन्न को न्यूनतम पद तक कम करें.
3x^{2}+4x-4=\left(3x-2\right)\left(x+2\right)
3 और 3 में महत्तम समापवर्तक 3 को रद्द कर दें.