मुख्य सामग्री पर जाएं
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

x^{2}-4x+4=0
दोनों ओर 3 से विभाजन करें.
a+b=-4 ab=1\times 4=4
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर x^{2}+ax+bx+4 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,-4 -2,-2
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूँकि a+b नकारात्मक है, a और b दोनों नकारात्मक हैं. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद 4 देते हैं.
-1-4=-5 -2-2=-4
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-2 b=-2
हल वह जोड़ी है जो -4 योग देती है.
\left(x^{2}-2x\right)+\left(-2x+4\right)
x^{2}-4x+4 को \left(x^{2}-2x\right)+\left(-2x+4\right) के रूप में फिर से लिखें.
x\left(x-2\right)-2\left(x-2\right)
पहले समूह में x के और दूसरे समूह में -2 को गुणनखंड बनाएँ.
\left(x-2\right)\left(x-2\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-2 के गुणनखंड बनाएँ.
\left(x-2\right)^{2}
द्विपद वर्ग के रूप में फिर से लिखें.
x=2
समीकरण के हल ढूँढने के लिए, x-2=0 को हल करें.
3x^{2}-12x+12=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 12}}{2\times 3}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 3, b के लिए -12 और द्विघात सूत्र में c के लिए 12, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 3\times 12}}{2\times 3}
वर्गमूल -12.
x=\frac{-\left(-12\right)±\sqrt{144-12\times 12}}{2\times 3}
-4 को 3 बार गुणा करें.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 3}
-12 को 12 बार गुणा करें.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 3}
144 में -144 को जोड़ें.
x=-\frac{-12}{2\times 3}
0 का वर्गमूल लें.
x=\frac{12}{2\times 3}
-12 का विपरीत 12 है.
x=\frac{12}{6}
2 को 3 बार गुणा करें.
x=2
6 को 12 से विभाजित करें.
3x^{2}-12x+12=0
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
3x^{2}-12x+12-12=-12
समीकरण के दोनों ओर से 12 घटाएं.
3x^{2}-12x=-12
12 को इसी से घटाने से 0 मिलता है.
\frac{3x^{2}-12x}{3}=-\frac{12}{3}
दोनों ओर 3 से विभाजन करें.
x^{2}+\left(-\frac{12}{3}\right)x=-\frac{12}{3}
3 से विभाजित करना 3 से गुणा करने को पूर्ववत् करता है.
x^{2}-4x=-\frac{12}{3}
3 को -12 से विभाजित करें.
x^{2}-4x=-4
3 को -12 से विभाजित करें.
x^{2}-4x+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
-2 प्राप्त करने के लिए x पद के गुणांक -4 को 2 से भाग दें. फिर समीकरण के दोनों ओर -2 का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}-4x+4=-4+4
वर्गमूल -2.
x^{2}-4x+4=0
-4 में 4 को जोड़ें.
\left(x-2\right)^{2}=0
फ़ैक्‍टर x^{2}-4x+4. सामान्यतः जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसे हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में फ़ैक्‍टर किया जा सकता है.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
समीकरण के दोनों ओर का वर्गमूल लें.
x-2=0 x-2=0
सरल बनाएं.
x=2 x=2
समीकरण के दोनों ओर 2 जोड़ें.
x=2
अब समीकरण का समाधान हो गया है. हल समान होते हैं.