गुणनखंड निकालें
\left(x-2\right)\left(2x-1\right)\left(x^{2}+1\right)
मूल्यांकन करें
\left(x-2\right)\left(2x-1\right)\left(x^{2}+1\right)
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
2x^{4}-5x^{3}+4x^{2}-5x+2=0
व्यंजक का गुणनखंड निकालने के लिए, उस समीकरण को हल करें जहाँ अभिव्यक्ति 0 बराबर होती है.
±1,±2,±\frac{1}{2}
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द 2 को विभाजित करती है और q अग्रणी गुणांक 2 को विभाजित करती है. \frac{p}{q} सभी उंमीदवारों की सूची.
x=2
निरपेक्ष मान के द्वारा छोटे से प्रारंभ करके, सभी पूर्णांक मानों को आज़माकर एक जैसे रूट ढूँढें. यदि कोई पूर्णांक जड़ें नहीं मिलती हैं, तो भिन्नों को आज़माएँ.
2x^{3}-x^{2}+2x-1=0
फ़ैक्टर प्रमेय के द्वारा, x-k प्रत्येक रूट k के लिए बहुपद का एक फ़ैक्टर है. 2x^{3}-x^{2}+2x-1 प्राप्त करने के लिए 2x^{4}-5x^{3}+4x^{2}-5x+2 को x-2 से विभाजित करें. परिणाम का गुणनखंड निकालने के लिए, उस समीकरण को हल करें जहाँ अभिव्यक्ति 0 बराबर होती है.
±\frac{1}{2},±1
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द -1 को विभाजित करती है और q अग्रणी गुणांक 2 को विभाजित करती है. \frac{p}{q} सभी उंमीदवारों की सूची.
x=\frac{1}{2}
निरपेक्ष मान के द्वारा छोटे से प्रारंभ करके, सभी पूर्णांक मानों को आज़माकर एक जैसे रूट ढूँढें. यदि कोई पूर्णांक जड़ें नहीं मिलती हैं, तो भिन्नों को आज़माएँ.
x^{2}+1=0
फ़ैक्टर प्रमेय के द्वारा, x-k प्रत्येक रूट k के लिए बहुपद का एक फ़ैक्टर है. x^{2}+1 प्राप्त करने के लिए 2x^{3}-x^{2}+2x-1 को 2\left(x-\frac{1}{2}\right)=2x-1 से विभाजित करें. परिणाम का गुणनखंड निकालने के लिए, उस समीकरण को हल करें जहाँ अभिव्यक्ति 0 बराबर होती है.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 1}}{2}
प्रपत्र ax^{2}+bx+c=0 के सभी समीकरणों को \frac{-b±\sqrt{b^{2}-4ac}}{2a} द्विघात सूत्र का उपयोग करके हल किया जा सकता है. द्विघात सूत्र में a के लिए 1, b के लिए 0, और c के लिए 1 प्रतिस्थापित करें.
x=\frac{0±\sqrt{-4}}{2}
परिकलन करें.
x^{2}+1
बहुपद x^{2}+1 फ़ैक्टर नहीं किया गया क्योंकि इसमें कोई तर्कसंगत रूट नहीं हैं.
\left(x-2\right)\left(2x-1\right)\left(x^{2}+1\right)
प्राप्त की गई रूटों का उपयोग करके फ़ैक्टर व्यंजक को फिर से लिखें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}